外链论坛

 找回密码
 立即注册
搜索
查看: 23|回复: 3

新书举荐 | 人工智能技术基本

[复制链接]

2979

主题

3万

回帖

9956万

积分

论坛元老

Rank: 8Rank: 8

积分
99569190
发表于 2024-9-27 15:28:36 | 显示全部楼层 |阅读模式

书名:人工智能技术基本

书号:9787302-664208

作者:王科俊,卢桂萍,

张恩,方宇杰,张连波

出版时间:2024年7月

内容介绍

人工智能简介 | 神经网络基本

卷积神经网络 | 循环神经网络

重视力机制 | Transformer

知识图谱 | 图神经网络

生成式人工智能模型 | 设备学习

以全新角度介绍人工智能技术的基本理论和办法,强调深度神经网络已然作为当前人工智能各样理论办法和应用的基本,指明知识图谱、图神经网络和生成式人工智能的构建和实现离不开深度神经网络的支撑,知道设备学习办法是确定模型尤其是深度神经网络模型和各类应用框架参数的办法

全书通俗易懂,仅需具备高等数学基本能够学习人工智能技术的基本理论办法,全面认识当前人工智能技术的状况

配套资源

教育大纲、教育课件、习题答案

本书特殊

将人工智能技术分为深度神经网络、知识图谱、图神经网络、生成式人工智能和设备学习办法5部分,体系新颖,内容完整。

全书的理论办法通俗易懂,图文并茂,表现了作者的研究成果和对人工智能技术的独到见解。

融入人工智能技术的最新成果,如构建大模型的基本Transformer、Bert和GPT,以及训练大模型的指示学习、提示学习和思维链技术等。

适合做为高等学校开设人工智能技术课程的教材,可供关联专业的工程技术人员参考。

配套的学习资源可从清华大学出版社网站获取。

作者简介

王科俊,教授,博导。中国人工智能学会理事,黑龙江省人工智能学会理事长,黑龙江省神经科学学会副理事长,北京理工大学珠海校区教授,哈尔滨工程大学教授,黑龙江大学兼职教授。从事深度学习与神经网络、智能监控和多模态生物特征识别等方向的科研。完成研究项目30余项。发布论文350余篇,出版学术专著4部、教材3部,主审教材2部。得到部级科技进步二等奖3项、三等奖4项,省高校科学技术一等奖1项、二等奖1项。得到授权发明专利38项,国家版权局软件著作权登记登记1项。

卢桂萍,教授、高级工程师。广东省工程图学学会理事,广东省科协学会学术项目评审专家,珠海市工业互联网协会理事,珠海市创客协会理事,珠海市科学技术协会专家,北京理工大学珠海校区教授。从事人工智能技术理论与应用、多模态情感识别、虚拟现实与网络化制造等方向科研。主持教研究项目20余项。发布论文40余篇。以主编、副主编身份出版教材8本。授权发明专利12项、计算机软件著作权3项。2014-2018年入选广东省“千百十”人才培养计划第八批培养对象。

读者对象

人工智能、智能科学与技术专业本科生、科研

全套教育PPT

习题答案

精彩样章

向上滑动阅览

目录

向上滑动阅览

第1章人工智能简介1

1.1人工智能的定义及发展历史1

1.1.1人工智能的定义1

1.1.2人工智能的发展历史1

1.2人工智能办法3

1.3人工智能的应用5

1.4人工智能的将来6

1.4.1近期发展目的6

1.4.2人工智能的将来7

1.5小结7

思考与练习7

第2章神经网络基本8

2.1生物神经元与生物神经网络8

2.1.1生物神经元8

2.1.2生物神经网络9

2.2人工神经元与人工神经网络9

2.2.1人工神经元9

2.2.2激活函数10

2.2.3人工神经网络13

2.3前向神经网络13

2.4反向传播算法14

2.4.1链式法则15

2.4.2梯度下降法15

2.4.3反向传播算法15

2.4.4反向传播算法的改进算法18

2.5处理数据和训练模型的技巧20

2.5.1数据预处理——数据标准化20

2.5.2权重初始化21

2.5.3防止过拟合的常用办法23

2.6小结24

思考与练习24

第3章卷积神经网络25

3.1卷积神经网络的特性25

3.1.1局部连接26

3.1.2权值共享26

3.1.3不变性27

3.2卷积神经网络结构和训练27

3.2.1卷积层27

3.2.2池化层32

3.2.3全连接层33

3.2.4卷积神经网络的训练35

3.3卷积神经网络经典模型36

3.3.1LeNet5网络37

3.3.2AlexNet网络38

3.3.3VGGNet网络41

3.3.4其他几种经典网络的基本结构42

3.4小结48

思考与练习48

第4章循环神经网络49

4.1循环神经网络的基本结构49

4.2循环神经网络的训练办法52

4.2.1标准循环神经网络的前向输出流程52

4.2.2循环神经网络的训练办法——随时间反向传播53

4.2.3循环神经网络训练过程中的梯度消失和梯度爆炸问题及处理办法54

4.3循环神经网络拓展模型56

4.3.1简单循环网络56

4.3.2双向循环网络56

4.3.3长短期记忆网络57

4.3.4门控循环单元网络61

4.4循环神经网络的应用结构62

4.4.1同步的序列到序列结构(N到N)62

4.4.2序列归类结构(N到1)62

4.4.3向量到序列结构(1到N)62

4.4.4异步的序列到序列的模式(N到M)64

4.5小结65

思考与练习65

第5章重视力机制67

5.1软重视力机制的原理及计算过程68

5.2通道重视力和空间重视力70

5.2.1通道重视力70

5.2.2空间重视力73

5.2.3混合重视力73

5.3自重视力机制76

5.3.1自重视力机制的输入方式及特性76

5.3.2自注意力机制与RNN的区别79

5.3.3自重视力机制在视觉行业的应用80

5.4互重视力机制84

5.5小结85

思考与练习85

第6章Transformer86

6.1Transformer的结构和工作原理86

6.1.1Transformer的输入89

6.1.2多头自重视力机制90

6.1.3编码器结构92

6.1.4译码器结构93

6.1.5Transformer的训练95

6.1.6Transformer的特点分析96

6.2Transformer在NLP中的应用96

6.2.1BERT的基本原理和训练办法97

6.2.2GPT的基本原理和训练办法101

6.3Transformer在视觉行业中的应用104

6.3.1视觉Transformer104

6.3.2其他视觉Transformer106

6.3.3受ViT启发处理视觉问题的多层感知机112

6.4小结115

思考与练习115

第7章知识图谱116

7.1知识图谱的起源116

7.1.1知识工程和专家系统116

7.1.2语义网络、语义网、链接数据和知识图谱117

7.1.3知识图谱的定义118

7.2知识图谱的架构119

7.2.1规律架构119

7.2.2技术架构120

7.3知识抽取121

7.3.1非结构化数据的知识抽取122

7.3.2结构化数据的知识抽取130

7.3.3半结构化数据的知识抽取130

7.4知识融合134

7.4.1知识融合的基本技术流程136

7.4.2典型知识融合工具137

7.4.3实体链接140

7.4.4知识合并144

7.5知识加工145

7.5.1实体构建145

7.5.2知识推理146

7.5.3质量评定148

7.5.4知识更新148

7.6小结148

思考与练习148

第8章图神经网络149

8.1图论基本与图谱理论149

8.1.1图论基本149

8.1.2图谱理论151

8.2图神经网络基本原理153

8.2.1图神经网络的基本操作153

8.2.2多层GNN155

8.2.3GNN应用场景156

8.3图神经网络归类157

8.4卷积图神经网络158

8.4.1基于图谱理论的ConvGNN159

8.4.2基于空间的ConvGNN160

8.5图重视力网络161

8.6图生成网络163

8.7图时空网络164

8.8小结166

思考与练习166

第9章生成式人工智能模型167

9.1变分自编码器168

9.1.1原理概念168

9.1.2训练办法169

9.1.3应用办法170

9.2生成对抗网络171

9.2.1GAN的基本原理171

9.2.2GAN网络的几种结构172

9.2.3GAN训练中生成与训练集之间的类似评估办法174

9.3流模型177

9.3.1流模型的工作原理177

9.3.2流模型的平常归类办法178

9.3.3平常的流模型转换函数设计179

9.4扩散模型180

9.4.1去噪扩散概率模型DDPM181

9.4.2基于分数匹配的随机微分方程扩散模型183

9.4.3扩散模型的采样生成184

9.5稳定扩散模型186

9.5.1LDM隐式扩散187

9.5.2文本与图像的相关办法——CLIP模型188

9.5.3其他要求下的生成模型189

9.5.4稳定扩散模型的应用190

9.6小结194

思考与练习194

第10章设备学习195

10.1弱监督学习195

10.1.1主动学习196

10.1.2半监督学习197

10.2自监督学习198

10.2.1生成式自监督学习199

10.2.2判别式自监督学习200

10.3迁移学习202

10.4深度强化学习204

10.4.1强化学习系统概述205

10.4.2基于值函数的深度强化学习207

10.4.3基于策略的深度强化学习208

10.4.4基于演员—评论家的深度强化学习209

10.4.5多智能体深度强化学习210

10.5元学习和小(零)样本学习212

10.5.1基于模型的元学习办法213

10.5.2模型无关的元学习办法216

10.6连续学习218

10.6.1连续学习的应用场景和重点挑战219

10.6.2连续学习的重点办法222

10.7大语言模型中的设备学习办法226

10.7.1提示学习和指示学习227

10.7.2上下文学习和思维链提示228

10.7.3基于人类反馈的强化学习233

10.8小结236

思考与练习236

参考文献237

返回外链论坛: http://www.fok120.com,查看更加多

责任编辑:网友投稿





上一篇:人工智能在旅游类app研发中的应用浅析
下一篇:分享5款国内AI软件,简单好用,效率神器
回复

使用道具 举报

3039

主题

3万

回帖

9606万

积分

论坛元老

Rank: 8Rank: 8

积分
96065878
发表于 2024-10-7 20:39:02 | 显示全部楼层
感谢您的精彩评论,为我带来了新的思考角度。
回复

使用道具 举报

2983

主题

3万

回帖

9910万

积分

论坛元老

Rank: 8Rank: 8

积分
99109240
发表于 2024-10-11 23:30:37 | 显示全部楼层
期待你更多的精彩评论,一起交流学习。
回复

使用道具 举报

3053

主题

3万

回帖

9913万

积分

论坛元老

Rank: 8Rank: 8

积分
99139078
发表于 2024-11-5 03:39:20 | 显示全部楼层
我深受你的启发,你的话语是我前进的动力。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

站点统计|Archiver|手机版|小黑屋|外链论坛 ( 非经营性网站 )|网站地图

GMT+8, 2024-11-18 04:43 , Processed in 0.124476 second(s), 21 queries .

Powered by Discuz! X3.4

Copyright © 2001-2023, Tencent Cloud.