fny5jt9 发表于 2024-10-10 14:30:46

Science封面:玻璃微结构3D打印新技术


    <h1 style="color: black; text-align: left; margin-bottom: 10px;">本文来自<span style="color: black;">微X</span>公众号:X-MOLNews</h1>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">价廉物美、用途广泛的玻璃是制造微光学元件的首选材料,常应用于光纤、<span style="color: black;">表示</span>屏幕、微流体处理、芯片实验室等设备。随着设备专业化性能的<span style="color: black;">加强</span>,对玻璃材料的结构精细程度、光学和机械性能的<span style="color: black;">需求</span><span style="color: black;">亦</span>越来越高。<span style="color: black;">不外</span>,传统玻璃制造技术成本高且速度慢,而普通层层打印的3D打印技术又<span style="color: black;">一般</span>会让玻璃制品产生粗糙的纹理,影响光学应用。人们更期待快速且平整度高的玻璃加工技术。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">近期</span>,</span><strong style="color: blue;"><span style="color: black;">加州大学伯克利分校Joseph T. Toombs</span></strong><span style="color: black;">和</span><strong style="color: blue;"><span style="color: black;">Hayden K. Taylor</span></strong><span style="color: black;">教授等<span style="color: black;">科研</span>者在</span><strong style="color: blue;"><span style="color: black;">Science </span></strong><span style="color: black;">杂志上<span style="color: black;">发布</span>封面论文,设计了一种新的被<span style="color: black;">叫作</span>为</span><strong style="color: blue;"><span style="color: black;">“微尺度计算轴向光刻”(microscale computed axial lithography, micro-CAL)</span></strong><span style="color: black;">的技术,只需几分钟<span style="color: black;">乃至</span>几秒钟<span style="color: black;">就可</span>打印出毫米级乃至微米级的<span style="color: black;">繁杂</span>石英玻璃微结构,表面粗糙度低至为6 nm。</span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/a225db4e1f0f437b8ef992c07296c97c~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728803841&amp;x-signature=z8DTztEH4nyhEjoFaFoFOf6ozj4%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">3D打印4.5毫米的精细玻璃结构。<span style="color: black;">照片</span><span style="color: black;">源自</span>:</span><span style="color: black;">Science </span><span style="color: black;">当期封面</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">科研</span>者采用一种高透明度的光固化纳米复合材料<span style="color: black;">做为</span>前驱体,由液体单体光固化粘合剂基质和非晶球形二氧化硅纳米颗粒<span style="color: black;">构成</span>,颗粒直径为40 nm。粘合剂<span style="color: black;">经过</span>自由基聚合,<span style="color: black;">能够</span>在打印结构中支撑纳米颗粒。前驱体在23 °C下的零剪切粘度为10 Pa•s,加热至60 °C可将粘度降低一个数量级。打印后,被去除的纳米复合材料可重新<span style="color: black;">做为</span>前驱体用于打印。<span style="color: black;">另外</span>,粘合剂的折射率几乎与玻璃的折射率相同,<span style="color: black;">因此呢</span>光<span style="color: black;">经过</span>材料时几乎<span style="color: black;">无</span>散射,这<span style="color: black;">针对</span>micro-CAL技术的成功至关重要。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">利用micro-CAL技术打印石英玻璃材料,<span style="color: black;">拥有</span><span style="color: black;">非常多</span><span style="color: black;">优良</span>。<span style="color: black;">例如</span>采用一体成型,<span style="color: black;">能够</span>避免分层沉积<span style="color: black;">导致</span>的结构缺陷,<span style="color: black;">从而</span><span style="color: black;">加强</span>玻璃的光学和机械性能;印刷过程中,前驱体和打印物体之间无相对运动,<span style="color: black;">因此呢</span><span style="color: black;">能够</span><span style="color: black;">选取</span>高粘度和触变性的纳米复合前驱体;成型过程中,打印物体被前体材料<span style="color: black;">包裹</span>,不需要引入牺牲性的固体支撑结构;<span style="color: black;">能够</span>打印几何形状更加<span style="color: black;">繁杂</span>的物体,且表面光滑平整。</span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/4bb8d7f4ef7146d5b33a0c1ea2e5466c~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728803841&amp;x-signature=9LF6QCHbpgKl1o5V8GQgM0Bqns0%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Micro-CAL技术打印石英玻璃物体过程。<span style="color: black;">照片</span><span style="color: black;">源自</span>:</span><span style="color: black;">Science</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">打印后的物体需要经过两步热处理:去粘合剂(~600 °C)和烧结(~1300 °C),使得二氧化硅纳米颗粒熔融在<span style="color: black;">一块</span>,形成致密透明的玻璃。<span style="color: black;">不外</span>,与其他技术<span style="color: black;">类似</span>,烧结过程中<span style="color: black;">显现</span>26%的各向同性的线性收缩,<span style="color: black;">因此呢</span>有必要在打印前<span style="color: black;">思虑</span>尺寸变化,以做好缩放设计。</span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/94c5058f73a541e8ae62002d8f955ff2~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728803841&amp;x-signature=rkeaC15dSNAmk5LilKLeXYD50WI%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">加入TEMPO及烧结结构表征。<span style="color: black;">照片</span><span style="color: black;">源自</span>:</span><span style="color: black;">Science</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">另外</span>,向纳米复合材料中加入2,2,6,6-四甲基哌啶氧化物(TEMPO)可有效<span style="color: black;">控制</span>自由基,更易去除未固化的基质,大大<span style="color: black;">增多</span>了树脂材料的光刻精度,从而改进了micro-CAL工艺。<span style="color: black;">科研</span>者利用调制传递函数(MTF)来<span style="color: black;">测绘</span>光学分辨率,在大于 66.7 cycles mm–1范围内,MTF值大于0.4。结合梯度下降数字掩模优化,Micro-CAL系统能够在约30到90秒内实现石英玻璃的快速打印,最小特征尺寸分别为20 μm和50 μm。</span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/5e2a06be27064be2bb28805a50451926~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728803841&amp;x-signature=6vqnhknzT36FMQM4aqxVh6KEjGQ%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">论文作者Joseph T. Toombs和Hayden K. Taylor教授。<span style="color: black;">照片</span><span style="color: black;">源自</span>:UC Berkeley </span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">微蜂窝状结构已被广泛应用于各个<span style="color: black;">行业</span>,如光子学、能源、生物工程等,<span style="color: black;">倘若</span><span style="color: black;">运用</span>玻璃为材料,<span style="color: black;">繁杂</span>的多孔性使其难以<span style="color: black;">经过</span>传统制造工艺进行加工。<span style="color: black;">科研</span>者利用Micro-CAL技术能够直接且<span style="color: black;">快速</span>地打印出直径为~100 μm的石英玻璃多面体,以及<span style="color: black;">更加多</span>的<span style="color: black;">繁杂</span>球形笼状结构。</span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/4c366856eba5421db03f90d4958d7b4c~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728803841&amp;x-signature=G8vra8fzZ3KeCYAPA1LcbFSaJ5Q%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">基于CAL技术打印玻璃微结构。<span style="color: black;">照片</span><span style="color: black;">源自</span>:</span><span style="color: black;">Science</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">为了证明打印的玻璃制品<span style="color: black;">拥有</span>良好的机械性能,<span style="color: black;">科研</span>者制备了豪氏桁架,并对其进行三点弯曲,断裂应力<span style="color: black;">达到</span>187.7 MPa,优于其他打印方式。Micro-CAL技术还可用于微流道的设计和打印,通道内径和壁厚分别低至150 μm和85 μm。<span style="color: black;">另外</span>,利用该<span style="color: black;">办法</span>制备的透镜,表面平均粗糙度(Ra)仅为~6 nm,球面图形误差在1~10 μm之间。</span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p26-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/d3e71d4b5cfa44c085182a5fb6067bfa~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728803841&amp;x-signature=yF3%2F4oSM8QerM5KMBXcmy4KQErQ%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">微结构玻璃的打印及应用。<span style="color: black;">照片</span><span style="color: black;">源自</span>:</span><span style="color: black;">Science</span></p>
    <div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/456a1996c48343c3acfc291dc0bde25c~noop.image?_iz=58558&amp;from=article.pc_detail&amp;lk3s=953192f4&amp;x-expires=1728803841&amp;x-signature=F1JZIqcilBw%2F8moPu2LpVSPPOHM%3D" style="width: 50%; margin-bottom: 20px;"></div>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">“当玻璃零件<span style="color: black;">包括</span><span style="color: black;">非常多</span>缺陷或裂纹时,<span style="color: black;">常常</span><span style="color: black;">更易</span>断裂”,Taylor教授说,“与其他 3D 打印工艺相比,Micro-CAL技术能够制造表面更光滑的玻璃微结构,潜在<span style="color: black;">优良</span>巨大”。他还<span style="color: black;">弥补</span>道,“能够更快地制造这些玻璃零件并<span style="color: black;">拥有</span>更大的结构自由度,有望带来新的设备功能或成本更低的<span style="color: black;">制品</span>。”</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Volumetric additive manufacturing of silica glass with microscale computed axial lithography</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Joseph T. Toombs, Manuel Luitz, Caitlyn C. Cook, Sophie Jenne, Chi Chung Li, Bastian E. Rapp, Frederik Kotz-Helmer, Hayden K. Taylor</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Science</span><span style="color: black;">, </span><strong style="color: blue;"><span style="color: black;">2022</span></strong><span style="color: black;">, </span><span style="color: black;">376</span><span style="color: black;">, 308-312. DOI: 10.1126/science.abm6459</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">参考文献:</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"> Researchers develop innovative 3D-printing technology for glass microstructures</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">https://engineering.berkeley.edu/news/2022/04/researchers-develop-innovative-3d-printing-technology-for-glass-microstructures/</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">(本文由</span><strong style="color: blue;"><span style="color: black;">小希</span></strong><span style="color: black;">供稿)</span></p>




wrjc1hod 发表于 2024-10-17 06:53:52

感谢您的精彩评论,为我带来了新的思考角度。
页: [1]
查看完整版本: Science封面:玻璃微结构3D打印新技术