上海交通大学医学院科研团队发掘新型癌症治疗策略
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">5月12日,上海交通大学医学院马海龙、杨溪、张志愿<span style="color: black;">一起</span>通讯在期刊《Cancer Communications》上在线<span style="color: black;">发布</span>题为“Metabolic landscape of head and neck squamous cell carcinoma informs a novel kynurenine/Siglec-15 axis in immune escape”的<span style="color: black;">科研</span>论文,<span style="color: black;">科研</span>结果全面描述了HNSCC的代谢<span style="color: black;">状况</span>,揭示了Kyn/Siglec-15轴可能是一种新的潜在免疫代谢机制,为癌症<span style="color: black;">供给</span>了一种有前景的治疗策略。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q1.itc.cn/images01/20240515/99faf508043a4fd88af255cbfba8521f.png" style="width: 50%; margin-bottom: 20px;"></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">科研</span>背景</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">新陈代谢广泛参与病理和生理过程,如生长、<span style="color: black;">生长</span>和衰老,并受到生物体的精细调节。一旦新陈代谢失调,就会<span style="color: black;">显现</span>痛风、心血管<span style="color: black;">疾患</span>等严重<span style="color: black;">疾患</span>。代谢重编程是癌症的一个<span style="color: black;">重要</span>标志,它赋予肿瘤对<span style="color: black;">连续</span>代谢应激的适应能力,从而促进癌症<span style="color: black;">发展</span>。癌细胞<span style="color: black;">能够</span><span style="color: black;">经过</span>降低肿瘤浸润免疫细胞的代谢适应性来<span style="color: black;">控制</span>抗肿瘤免疫。<span style="color: black;">另外</span>,改变的代谢物<span style="color: black;">能够</span>将信息传递到细胞核中并重塑表观遗传景观。例如,几种代谢物,如蛋氨酸、乙酰辅酶A和乳酸,是调节肿瘤<span style="color: black;">关联</span>基因表达的表观遗传修饰的<span style="color: black;">源自</span>。靶向肿瘤和免疫细胞代谢,例如<span style="color: black;">经过</span>谷氨酰胺酶和葡萄糖摄取<span style="color: black;">控制</span>剂,是一个新兴的癌症治疗<span style="color: black;">行业</span>。然而,迫切<span style="color: black;">必须</span>更理想、更精确的代谢靶点。阐明<span style="color: black;">反常</span>代谢特征<span style="color: black;">针对</span><span style="color: black;">认识</span>肿瘤发展机制和<span style="color: black;">研发</span>新型靶向疗法至关<span style="color: black;">要紧</span>。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">免疫逃逸是癌症的另一个标志,它<span style="color: black;">准许</span>癌细胞<span style="color: black;">经过</span>募集抑制性免疫细胞和改变肿瘤微环境(TME)来逃避人体免疫系统的检测和攻击。越来越多证据<span style="color: black;">显示</span>,TME中的代谢重编程是肿瘤免疫逃逸的<span style="color: black;">重要</span>驱动<span style="color: black;">原因</span>,它改变了免疫细胞的活化、分化和杀伤。TME中的几种代谢物,如乳酸、钾、衣康酸和L-精氨酸,会损害肿瘤浸润淋巴细胞(TILs)的功能,并支持调节性T(Treg)细胞的能量供应,以促进免疫逃逸。<span style="color: black;">因此呢</span>,探索驱动免疫逃逸的<span style="color: black;">重要</span>代谢物<span style="color: black;">针对</span>理解免疫逃逸机制和靶点识别至关<span style="color: black;">要紧</span>。靶向代谢脆性<span style="color: black;">能够</span>重塑抗肿瘤TME,<span style="color: black;">加强</span>免疫<span style="color: black;">检测</span>点<span style="color: black;">控制</span>剂的效率。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">针对</span>头颈部鳞状细胞癌(HNSCC)<span style="color: black;">病人</span>,免疫治疗的客观缓解率<span style="color: black;">小于</span>20%。<span style="color: black;">因此呢</span>,应探讨大<span style="color: black;">都数</span>HNSCC<span style="color: black;">病人</span>免疫治疗失败的机制。<span style="color: black;">科研</span>人员之前的<span style="color: black;">科研</span><span style="color: black;">显示</span>,内源性干扰素-α和乳酸<span style="color: black;">能够</span>诱导HNSCC中免疫<span style="color: black;">检测</span>点分子的表达。然而,对调节免疫细胞功能的免疫<span style="color: black;">检测</span>点分子的<span style="color: black;">科研</span>还有很长的路要走。<span style="color: black;">日前</span>,<span style="color: black;">科研</span><span style="color: black;">重点</span>集中在乳腺癌、肾细胞癌和黑色素瘤等肿瘤中免疫逃逸的机制。揭示HNSCC中驱动免疫逃逸的机制<span style="color: black;">针对</span><span style="color: black;">加强</span>免疫治疗效果至关<span style="color: black;">要紧</span>。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">科研</span><span style="color: black;">发掘</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">本<span style="color: black;">科研</span>的目的是揭示HNSCC代谢重编程的前景,并阐明代谢物介导免疫逃逸的机制。对HNSCC<span style="color: black;">病人</span>进行代谢组学分析,并在代谢物刺激后进行<span style="color: black;">身体</span>TILs的功能分析。<span style="color: black;">科研</span>人员进一步探讨了犬尿氨酸(Kyn)<span style="color: black;">怎样</span>调节Siglec-15参与HNSCC 免疫逃逸的下行靶点,为HNSCC更好的癌症治疗策略<span style="color: black;">供给</span>了新的曙光。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q1.itc.cn/images01/20240515/d4e466e045fa45de8e64f48004320fe8.png" style="width: 50%; margin-bottom: 20px;"></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">科研</span>结论</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">综上所述,<span style="color: black;">科研</span>结果全面描述了HNSCC的代谢<span style="color: black;">状况</span>,揭示了Kyn/Siglec-15轴可能是一种新的潜在免疫代谢机制,为癌症<span style="color: black;">供给</span>了一种有前景的治疗策略。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">本文链接:https://www.360worldcare.com/medical.article-4942-11.html<a style="color: black;"><span style="color: black;">返回<span style="color: black;">外链论坛:http://www.fok120.com/</span>,查看<span style="color: black;">更加多</span></span></a></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">责任编辑:网友投稿</span></p>
你的言辞如同繁星闪烁,点亮了我心中的夜空。 “BS”(鄙视的缩写) 你说得对,我们一起加油,未来可期。 楼主继续加油啊!外链论坛加油! 你说得对,我们一起加油,未来可期。
页:
[1]