首例!量子AI研发癌症药物,揭秘新一代“医疗利器”的诞生→
<img src="https://mmbiz.qpic.cn/sz_mmbiz_gif/Z6jSflhablylcV0UBhbQ6mqMJxHfYrAM2B2vCrrZr9UZsLCo9VcAcRazXQfC7Q9iasGrnF07iaOENQSnPZrWsAcg/640?wx_fmt=gif&from=appmsg&wxfrom=5&wx_lazy=1&wx_co=1&tp=webp" style="width: 50%; margin-bottom: 20px;"><span style="color: black;">光子</span><span style="color: black;">盒<span style="color: black;">科研</span>院</span><img src="https://mmbiz.qpic.cn/sz_mmbiz_png/Z6jSflhablyIm7jqOjKHiaP79n5vPKFOaBNv4ibLkNEeQYCKn6ypSWlxNic5fMcL8QvZehWS9rB7zV0JL9VZXeSYw/640?wx_fmt=png&from=appmsg&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1" style="width: 50%; margin-bottom: 20px;"><span style="color: black;">Zapata AI,一家工业人工智能<span style="color: black;">行业</span>的领先<span style="color: black;">公司</span>,宣布与Insilico Medicine、多伦多大学和圣犹达儿童<span style="color: black;">科研</span>医院合作,<strong style="color: blue;">首次证明在量子硬件上运行的生成模型在<span style="color: black;">研发</span>有效的癌症治疗候选<span style="color: black;">药品</span>方面,超越了当前最先进的传统模型</strong>。</span><span style="color: black;"><strong style="color: blue;">此项<span style="color: black;">科研</span>突显了利用当前量子设备进行混合量子生成式人工智能<span style="color: black;">药品</span>发现的巨大<span style="color: black;">潜能</span>。</strong></span><img src="https://mmbiz.qpic.cn/sz_mmbiz_png/Z6jSflhablyIm7jqOjKHiaP79n5vPKFOaIicKU3QKU6bvzuUiaPgmJGp0e8OZVeo60uLwhwfBO4DWr4mHiawzicpEqQ/640?wx_fmt=png&from=appmsg&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1" style="width: 50%; margin-bottom: 20px;"><span style="color: black;">这项<span style="color: black;">科研</span><span style="color: black;">日前</span><span style="color: black;">发布</span>在ArXiv上,等待同行评审</span><span style="color: black;">论文链接:</span><span style="color: black;">https://arxiv.org/abs/2402.08210</span><span style="color: black;">在该<span style="color: black;">科研</span>中,<span style="color: black;">科研</span>团队利用生成式人工智能技术<span style="color: black;">研发</span>出了新型的KRAS<span style="color: black;">控制</span>剂。KRAS因其<span style="color: black;">繁杂</span>的生化属性,在癌症治疗<span style="color: black;">行业</span><span style="color: black;">长时间</span>被视为难以<span style="color: black;">解决</span>的<span style="color: black;">目的</span>。</span><span style="color: black;"><span style="color: black;">科研</span>人员在传统硬件、量子硬件(<span style="color: black;">尤其</span>是一台16量子比特的IBM设备)以及模拟量子硬件上运行的生成模型,生<span style="color: black;">成为了</span>一百万个候选<span style="color: black;">药品</span>,随后<span style="color: black;">经过</span>算法和人工<span style="color: black;">评定</span>进行了筛选。</span><span style="color: black;"><span style="color: black;">最后</span>,<span style="color: black;">专家</span>合成并<span style="color: black;">经过</span>细胞实验测试了15种分子。</span><span style="color: black;">其中两种由量子<span style="color: black;">加强</span>生成模型产生的分子与现有的KRAS<span style="color: black;">控制</span>剂在结构上截然不同,并<span style="color: black;">表示</span>出比纯传统模型产生的分子更高的结合亲和力。</span><img src="https://mmbiz.qpic.cn/sz_mmbiz_png/Z6jSflhablyIm7jqOjKHiaP79n5vPKFOaggCa2JYq022tWl382tS2rz7TiaaFJ7hibAicDYickvOIhYweadO3gmTliag/640?wx_fmt=png&from=appmsg&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1" style="width: 50%; margin-bottom: 20px;"><span style="color: black;">用于<span style="color: black;">研发</span>KRAS配体的量子-经典混合框架示意图</span><img src="https://mmbiz.qpic.cn/sz_mmbiz_png/Z6jSflhablyIm7jqOjKHiaP79n5vPKFOaWDTl0RYibgwCCZUtCWbHEYg9XJY0fjPcVKrRKDLLicT6ORLpibjKNoCrA/640?wx_fmt=png&from=appmsg&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1" style="width: 50%; margin-bottom: 20px;"><span style="color: black;">用于<span style="color: black;">药品</span><span style="color: black;">发掘</span>应用的量子<span style="color: black;">加强</span>生成模型</span><img src="https://mmbiz.qpic.cn/sz_mmbiz_png/Z6jSflhablyIm7jqOjKHiaP79n5vPKFOaiaKd2SKMtXibEWW3ktDI7OVwFXnnsWztAoth9INRRcGyFwjord0DyAQg/640?wx_fmt=png&from=appmsg&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1" style="width: 50%; margin-bottom: 20px;"><span style="color: black;">量子配体设计<span style="color: black;">办法</span>与经典配体设计<span style="color: black;">办法</span>的基准比较</span><span style="color: black;">该<span style="color: black;">科研</span><span style="color: black;">运用</span>了Zapata AI<span style="color: black;">机构</span>的Orquestra®平台上的QML Suite Python软件包,该软件包可<span style="color: black;">经过</span>以下链接<span style="color: black;">拜访</span>:</span><span style="color: black;">https://docs.orquestra.io/docs/qml-core/index.html</span><span style="color: black;">Zapata AI<span style="color: black;">机构</span>的首席技术官兼联合创始人Yudong Cao对该项目<span style="color: black;">暗示</span>兴奋:“这个项目激动人心地展示了量子计算和传统计算<span style="color: black;">怎样</span>互补,<span style="color: black;">一起</span><span style="color: black;">供给</span>端到端的<span style="color: black;">处理</span><span style="color: black;">方法</span>。<span style="color: black;">咱们</span>期待着进一步推进这项<span style="color: black;">科研</span>,推动所<span style="color: black;">发掘</span>的分子<span style="color: black;">经过</span><span style="color: black;">药品</span><span style="color: black;">发掘</span>流程,将<span style="color: black;">咱们</span>的<span style="color: black;">办法</span>应用于其他<span style="color: black;">疾患</span>靶点,并将<span style="color: black;">咱们</span>的量子<span style="color: black;">加强</span>型生成式人工智能技术扩展到面临<span style="color: black;">繁杂</span>设计挑战的其他行业应用中。”</span><img src="https://mmbiz.qpic.cn/sz_mmbiz_png/Z6jSflhablyIm7jqOjKHiaP79n5vPKFOa40md99pRrQw3ldkQqwdtWOrRkibFZGK1UNvfR9NlSxOaJPHFhGiawicBw/640?wx_fmt=png&from=appmsg&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1" style="width: 50%; margin-bottom: 20px;"><span style="color: black;">此项<span style="color: black;">科研</span>承接了该团队与富士康在2023年联合<span style="color: black;">发布</span>的<span style="color: black;">科研</span>,为量子生成式人工智能在<span style="color: black;">药品</span><span style="color: black;">研发</span><span style="color: black;">行业</span>揭开了新篇章。</span><img src="https://mmbiz.qpic.cn/sz_mmbiz_png/Z6jSflhablyIm7jqOjKHiaP79n5vPKFOaXHiaWs3CpSShyzj2MMPkV7zvbkzuohCGsm6LJQtH0o57AiaUqoaQ0Kdw/640?wx_fmt=png&from=appmsg&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1" style="width: 50%; margin-bottom: 20px;">论文链接:https://pubs.acs.org/doi/full/10.1021/acs.jcim.3c00562<span style="color: black;"><span style="color: black;">这里</span>之前,Zapata AI还曾宣布与D-Wave Quantum<span style="color: black;">创立</span>战略伙伴关系,旨在<span style="color: black;">首要</span>利用量子生成式人工智能模型加速<span style="color: black;">商场</span>应用中新分子的探索。</span><span style="color: black;">当时,Zapata AI的首席执行官及联合创始人克里斯托弗·萨沃伊(Christopher Savoie)充满期待地<span style="color: black;">暗示</span>:“这是历史上首次,<span style="color: black;">咱们</span><span style="color: black;">经过</span>量子<span style="color: black;">加强</span>的人工智能技术成功生<span style="color: black;">成为了</span><span style="color: black;">拥有</span><span style="color: black;">实质</span><span style="color: black;">潜能</span>的<span style="color: black;">药品</span>先导分子。更<span style="color: black;">要紧</span>的是,这只是一个<span style="color: black;">起始</span>。”</span><span style="color: black;">萨沃伊进一步强调:“<span style="color: black;">思虑</span>到Zapata的生成式人工智能技术与D-Wave的量子退火计算技术在<span style="color: black;">商场</span><span style="color: black;">行业</span>的成熟度,<span style="color: black;">咱们</span>期待能够<span style="color: black;">快速</span>推动这些技术进入市场。”</span><span style="color: black;">“<span style="color: black;">咱们</span>期望<span style="color: black;">经过</span>扩大这项<span style="color: black;">科研</span>,不仅为<span style="color: black;">药品</span><span style="color: black;">开发</span>,<span style="color: black;">亦</span>为其他行业应用开辟新分子的<span style="color: black;">发掘</span>之路。”</span><img src="https://mmbiz.qpic.cn/sz_mmbiz_png/Z6jSflhablyIm7jqOjKHiaP79n5vPKFOarE8DTwLfth6LllBmZ04Y3FMIarRJTrcicVXIs9lKum2r0BYUhGKWWNw/640?wx_fmt=png&from=appmsg&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1" style="width: 50%; margin-bottom: 20px;"><span style="color: black;">在1971年,理查德-尼克松总统雄心勃勃地对癌症宣战,承诺利用现代医学的进步来终结这一人类<span style="color: black;">劫难</span>。然而,经<span style="color: black;">太多</span>年的<span style="color: black;">奋斗</span>和<span style="color: black;">科研</span>,结果却是癌症似乎占据了上风。</span><span style="color: black;">尽管手术、化学疗法和放射疗法在抗癌斗争中取得了<span style="color: black;">发展</span>,但癌症的死亡率仍然居高不下。在美国,癌症<span style="color: black;">作为</span>了仅次于心血管<span style="color: black;">疾患</span>的第二大致命<span style="color: black;">疾患</span>。</span><span style="color: black;">到2018年,<span style="color: black;">全世界</span>因癌症而死亡的人数达到了950万。</span><span style="color: black;">挑战癌症的<span style="color: black;">基本</span>困难在于,<span style="color: black;">长时间</span><span style="color: black;">败兴</span>科学界<span style="color: black;">针对</span>癌症的本质理解不足。关于这个致命<span style="color: black;">疾患</span><span style="color: black;">是不是</span>由单一<span style="color: black;">原因</span><span style="color: black;">诱发</span>,或是多种<span style="color: black;">原因</span>如<span style="color: black;">膳食</span>、污染、遗传、病毒、辐射和吸烟等<span style="color: black;">繁杂</span><span style="color: black;">原因</span><span style="color: black;">一起</span><span style="color: black;">功效</span>的结果,曾<span style="color: black;">诱发</span>广泛争议。</span><span style="color: black;">随着遗传学和生物技术的突飞猛进,<span style="color: black;">咱们</span>逐渐揭开了癌症的真面目。<span style="color: black;">基本</span>上<span style="color: black;">来讲</span>,癌症是一种与<span style="color: black;">咱们</span>的基因紧密<span style="color: black;">关联</span>的<span style="color: black;">疾患</span>,尽管环境<span style="color: black;">原因</span>和不幸的偶然<span style="color: black;">亦</span>能触发。</span><span style="color: black;"><span style="color: black;">实质</span>上,癌症并非单一的<span style="color: black;">疾患</span>,而是基因突变的<span style="color: black;">繁杂</span>集合,<span style="color: black;">引起</span>健康细胞<span style="color: black;">反常</span>增殖并<span style="color: black;">最后</span>危及生命。</span><span style="color: black;">癌症的<span style="color: black;">广泛</span>性贯穿历史和物种。从古代木乃伊到现代人类,从人到动物,癌症<span style="color: black;">没</span>处不在,<span style="color: black;">作为</span><span style="color: black;">繁杂</span>生命存在代价的一部分。</span><span style="color: black;">生命的<span style="color: black;">繁杂</span>性<span style="color: black;">需求</span>亿万细胞协同进行<span style="color: black;">繁杂</span>的化学反应,其中<span style="color: black;">有些</span>细胞的死亡和新细胞的生成是必要的,以支持生长和<span style="color: black;">生长</span>。</span><span style="color: black;">然而,当这一死亡过程<span style="color: black;">显现</span>错误,细胞<span style="color: black;">没</span>法停止繁殖,形成不死的癌细胞,它们不受<span style="color: black;">掌控</span>地生长,形成肿瘤,<span style="color: black;">最后</span>摧毁生命。</span><span style="color: black;">简而言之,癌细胞是失去了死亡能力的正常细胞。</span><span style="color: black;">癌症的发展<span style="color: black;">一般</span><span style="color: black;">必须</span>数年<span style="color: black;">乃至</span>数十年,累积的基因突变<span style="color: black;">最后</span><span style="color: black;">引起</span>细胞<span style="color: black;">失去控制</span>增殖。但癌症<span style="color: black;">为么</span>在进化过程中未被自然<span style="color: black;">选取</span>淘汰?<span style="color: black;">重点</span><span style="color: black;">由于</span>癌症大多在生育期后才显现,对进化的影响较小。</span><span style="color: black;">进化本质上是自然<span style="color: black;">选取</span>和随机机会的结果,而生命的分子机制虽然令人赞叹,但<span style="color: black;">亦</span>是经历亿年试错的随机产物。<span style="color: black;">因此呢</span>,<span style="color: black;">咱们</span><span style="color: black;">不可</span>期待身体能完美抵御所有<span style="color: black;">疾患</span>。</span><span style="color: black;"><strong style="color: blue;">量子技术的崛起为癌症<span style="color: black;">科研</span><span style="color: black;">供给</span>了新的<span style="color: black;">期盼</span>。</strong></span><span style="color: black;">量子计算机,凭借其处理<span style="color: black;">繁杂</span>问题的能力,为<span style="color: black;">咱们</span>在理解癌症的遗传<span style="color: black;">繁杂</span>性和筛选治疗<span style="color: black;">方法</span>上开辟了新天地,<span style="color: black;">尤其</span>适合<span style="color: black;">处理</span>癌症这类多变的<span style="color: black;">疾患</span>,为<span style="color: black;">咱们</span><span style="color: black;">供给</span>了全新的战斗平台,以对抗癌症及其他一系列难治<span style="color: black;">疾患</span>。</span><img src="https://mmbiz.qpic.cn/sz_mmbiz_png/Z6jSflhablyIm7jqOjKHiaP79n5vPKFOaDRjurFlmoXhqNzwJgqbXiaYmj9cE9LCrxT4OZBb3oVUVHcXrhe7Lribw/640?wx_fmt=png&from=appmsg&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1" style="width: 50%; margin-bottom: 20px;"><span style="color: black;"><span style="color: black;">怎样</span>判断自己<span style="color: black;">是不是</span><span style="color: black;">病患</span>癌症?遗憾的是,<span style="color: black;">咱们</span><span style="color: black;">常常</span>在癌症发展到较晚<span style="color: black;">周期</span><span style="color: black;">才可</span>察觉到。癌症的<span style="color: black;">初期</span>征兆<span style="color: black;">一般</span>隐匿而<span style="color: black;">很难</span>被<span style="color: black;">发掘</span>。</span><span style="color: black;">例如,肿瘤形成初期,<span style="color: black;">身体</span>可能<span style="color: black;">已然</span>有数十亿个癌细胞在繁殖。一旦确诊为恶性肿瘤,<span style="color: black;">大夫</span><span style="color: black;">一般</span>会<span style="color: black;">快速</span><span style="color: black;">意见</span>手术、放疗或化疗。</span><span style="color: black;">但在某些<span style="color: black;">状况</span>下,<span style="color: black;">这般</span>的<span style="color: black;">干涉</span>可能为时已晚。</span><span style="color: black;"><span style="color: black;">那样</span>,<span style="color: black;">倘若</span><span style="color: black;">咱们</span>能够在肿瘤形成之前就检测到<span style="color: black;">反常</span>细胞,从而有效阻止癌症的扩散呢?<strong style="color: blue;">在这一<span style="color: black;">行业</span>,量子计算机有望发挥<span style="color: black;">重要</span><span style="color: black;">功效</span>。</strong></span><span style="color: black;"><span style="color: black;">日前</span>,<span style="color: black;">经过</span>液体活检技术,我们已能检测出超过50种不同类型的癌症。简单的常规体检可能<span style="color: black;">最后</span>能够提前数年<span style="color: black;">发掘</span>潜在的致命癌症。</span><span style="color: black;">展望<span style="color: black;">将来</span>,<span style="color: black;">乃至</span>家中的马桶都可能<span style="color: black;">作为</span>检测癌症的前哨站,能够<span style="color: black;">敏锐</span>地识别循环于体液中的癌细胞、酶和基因标记,使癌症<span style="color: black;">再也不</span>比普通感冒更致命。每次如厕,你都有机会进行癌症筛查,智能马桶或许<span style="color: black;">作为</span><span style="color: black;">咱们</span>防御癌症的<span style="color: black;">第1</span>道防线。</span><span style="color: black;">尽管数以万计的不同基因突变可能<span style="color: black;">引起</span>癌症的<span style="color: black;">出现</span>,但量子计算机具备学习识别这些突变的<span style="color: black;">潜能</span>,使得一次简单的血液检测就可能诊断出多种潜在癌症。</span><span style="color: black;"><span style="color: black;">咱们</span>的基因组可能<span style="color: black;">每日</span>或每周被读取一次,并由远程量子计算机扫描,寻找有害突变的迹象。</span><span style="color: black;">虽然这并<span style="color: black;">不可</span>治愈癌症,但足以阻止其扩散,将癌症的威胁降至与普通感冒相当。</span><span style="color: black;">许多人问:“为什么<span style="color: black;">咱们</span><span style="color: black;">不可</span>治愈普通感冒?”<span style="color: black;">实质</span>上,<span style="color: black;">因为</span>存在300多种<span style="color: black;">持续</span>变异的病毒,<span style="color: black;">开发</span>针对每一种的疫苗并不现实,<span style="color: black;">咱们</span>只能学会与之共存。</span><span style="color: black;">这或许预示着癌症<span style="color: black;">科研</span>的<span style="color: black;">将来</span>方向。癌症<span style="color: black;">最后</span>可能被视为一种可管理的病症,而非致命判决。鉴于癌症基因的繁多,为<span style="color: black;">每一个</span>基因设计特定治疗<span style="color: black;">方法</span>可能不现实。</span><span style="color: black;">但<span style="color: black;">倘若</span><span style="color: black;">咱们</span>能利用量子计算机在癌细胞大规模扩散前几年,当它们仍然只<span style="color: black;">是由于</span>数百个细胞<span style="color: black;">构成</span>的微小群体时进行检测,<span style="color: black;">咱们</span>就有可能阻止它们的进一步发展。</span><span style="color: black;">换言之,<span style="color: black;">将来</span><span style="color: black;">咱们</span>或许总会遇到癌症,但<span style="color: black;">仅有</span>在极<span style="color: black;">少许</span><span style="color: black;">状况</span>下,癌症才会<span style="color: black;">作为</span>致命的威胁。</span><span style="color: black;">另一个探测<span style="color: black;">初期</span>癌症的<span style="color: black;">办法</span>可能<span style="color: black;">触及</span><span style="color: black;">运用</span>传感器来识别癌细胞释放的微弱气味。<span style="color: black;">将来</span>,你的手机上可能装有能够<span style="color: black;">捉捕</span>这些气味的附件,并与云端的量子计算机相连,这不仅能<span style="color: black;">帮忙</span>你抵御癌症,还能辅助预防其他多种<span style="color: black;">疾患</span>。量子计算机将分析全国数百万个“<span style="color: black;">设备</span>人鼻子”的数据,从而有效预防癌症的<span style="color: black;">出现</span>。</span><span style="color: black;">气味分析已被证明是一种有效的诊断技术。例如,机场<span style="color: black;">运用</span>经过训练的狗来检测冠状病毒,这种<span style="color: black;">办法</span>比<span style="color: black;">通常</span>的病毒PCR检测更快、更准确。</span><span style="color: black;">这种技术尽管仍<span style="color: black;">处在</span>实验<span style="color: black;">周期</span>,但<span style="color: black;">将来</span>可能像手机摄像头<span style="color: black;">同样</span>普及。</span><img src="https://mmbiz.qpic.cn/sz_mmbiz_png/Z6jSflhablyIm7jqOjKHiaP79n5vPKFOaLe26gk8XLhkEm35z7aF3RIuP1JOYg2FtzzLT7w4h3wRNMAynNp5k3w/640?wx_fmt=png&from=appmsg&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1" style="width: 50%; margin-bottom: 20px;"><span style="color: black;">赫尔辛基机场和其他<span style="color: black;">地区</span><span style="color: black;">已然</span><span style="color: black;">运用</span>这种<span style="color: black;">办法</span>对旅客进行筛查</span><span style="color: black;"><span style="color: black;">因为</span>数亿智能手机和传感器可能产生的海量数据,<span style="color: black;">仅有</span>量子计算机<span style="color: black;">才可</span>有效处理这些信息。这些超级计算机利用人工智能分析数据,可能在肿瘤形成前<span style="color: black;">数年</span>就<span style="color: black;">发掘</span>癌症迹象。</span><span style="color: black;">但<span style="color: black;">因为</span>该技术仍<span style="color: black;">处在</span>实验<span style="color: black;">周期</span>,分析一份尿液样本<span style="color: black;">是不是</span>含有癌症<span style="color: black;">必须</span>花费约1000美元。<span style="color: black;">因为</span>数亿智能手机和传感器可能产生的海量数据,<span style="color: black;">仅有</span>量子计算机<span style="color: black;">才可</span>有效处理这些信息。</span><span style="color: black;">这些超级计算机利用人工智能分析数据,可能在肿瘤形成前<span style="color: black;">数年</span>就<span style="color: black;">发掘</span>癌症迹象。</span><span style="color: black;"><span style="color: black;">将来</span>,多种<span style="color: black;">办法</span>可能<span style="color: black;">没</span>声<span style="color: black;">没</span>息地、<span style="color: black;">况且</span>毫不费力地揭示癌症的<span style="color: black;">初期</span>迹象,液体活检和气味探测技术或许能将数据直接发送至量子计算机,以识别多种癌症类型。</span><span style="color: black;"><span style="color: black;">最后</span>,“肿瘤”一词可能会从<span style="color: black;">咱们</span>的<span style="color: black;">平常</span>语言中消失,正如<span style="color: black;">咱们</span><span style="color: black;">再也不</span>讨论“放血”或“水蛭治疗”<span style="color: black;">同样</span>。</span><span style="color: black;"><strong style="color: blue;">但<span style="color: black;">倘若</span>癌症<span style="color: black;">已然</span>形成,量子计算机的介入又将<span style="color: black;">怎样</span>助力<span style="color: black;">咱们</span>治愈这一顽疾?</strong></span><span style="color: black;">随着科技的进步,量子计算能力的<span style="color: black;">提高</span>有望为癌症治疗带来革命性的突破,为<span style="color: black;">咱们</span><span style="color: black;">供给</span>更加精确和有效的治疗<span style="color: black;">方法</span>。</span><img src="https://mmbiz.qpic.cn/sz_mmbiz_png/Z6jSflhablyIm7jqOjKHiaP79n5vPKFOae9MPFRAQG9Qfliceib0MPD3xs4a6UPcn6GQWuc9JBCrlLkelPq00ZtRQ/640?wx_fmt=png&from=appmsg&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1" style="width: 50%; margin-bottom: 20px;"><span style="color: black;"><span style="color: black;">日前</span>,当癌症被诊断出来时,存在三种主流治疗<span style="color: black;">办法</span>:外科手术(切除肿瘤)、放疗(<span style="color: black;">运用</span>X射线或粒子束来摧毁癌细胞)以及化疗(<span style="color: black;">运用</span>化学物质毒杀癌细胞)。</span><span style="color: black;">然而,随着基因工程技术的发展,免疫疗法<span style="color: black;">做为</span>一种创新的治疗手段正日益受到关注。</span><img src="https://mmbiz.qpic.cn/sz_mmbiz_jpg/Z6jSflhablyIm7jqOjKHiaP79n5vPKFOaPeBzQ3yhibHX3auKdMsMo64bhmicXMvhdQaH2lVOOZhpiaDuvxtAhIrPg/640?wx_fmt=jpeg&from=appmsg&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1" style="width: 50%; margin-bottom: 20px;"><span style="color: black;">免疫疗法的核心在于激活和<span style="color: black;">加强</span>人体<span style="color: black;">自己</span>的免疫系统,以识别并攻击癌细胞。虽然癌细胞<span style="color: black;">善于</span>逃避免疫系统的侦测,免疫疗法旨在<span style="color: black;">经过</span>技术手段<span style="color: black;">提高</span>免疫系统对癌细胞的识别能力。</span><span style="color: black;">一种有效的策略是<span style="color: black;">经过</span>对癌细胞的基因组进行测序,精确<span style="color: black;">认识</span>癌症的类型和<span style="color: black;">发展</span>,再利用经过改造的病毒将癌症的遗传信息<span style="color: black;">移植</span>到从<span style="color: black;">病人</span>血液中提取的白细胞中。这些经过重新编程的白细胞被注射回<span style="color: black;">病人</span><span style="color: black;">身体</span>,从而能够识别并攻击癌细胞。</span><span style="color: black;">这种<span style="color: black;">办法</span><span style="color: black;">已然</span>在治疗多种癌症(膀胱癌、脑癌、乳腺癌、宫颈癌......),<span style="color: black;">包含</span><span style="color: black;">有些</span>难以治愈的晚期癌症中<span style="color: black;">表示</span>出<span style="color: black;">潜能</span>,为某些<span style="color: black;">本来</span><span style="color: black;">没</span>望的病例带来了<span style="color: black;">期盼</span>。</span><span style="color: black;">然而,这种疗法并非适用于所有类型的癌症,且<span style="color: black;">由于</span><span style="color: black;">触及</span>到人为修改白细胞的遗传信息,有时会<span style="color: black;">诱发</span>不完美的变化,可能<span style="color: black;">引起</span>副<span style="color: black;">功效</span>,<span style="color: black;">乃至</span>在某些<span style="color: black;">状况</span>下,这些副<span style="color: black;">功效</span>可能是致命的。</span><span style="color: black;"><strong style="color: blue;">量子计算技术的发展有望进一步完善免疫疗法。</strong></span><span style="color: black;">量子计算机<span style="color: black;">经过</span>分析<span style="color: black;">海量</span>数据,有<span style="color: black;">潜能</span>精确识别<span style="color: black;">每一个</span>癌细胞的遗传特征,从而优化治疗<span style="color: black;">方法</span>。<span style="color: black;">经过</span><span style="color: black;">定时</span>分析个体的体液和基因组,与已知的癌症基因进行比较,<strong style="color: blue;">量子计算<span style="color: black;">能够</span>助力于<span style="color: black;">初期</span>诊断和个性化治疗计划的制定,<span style="color: black;">期盼</span><span style="color: black;">最后</span>能<span style="color: black;">明显</span>降低癌症的威胁</strong>。</span><span style="color: black;"><span style="color: black;">经过</span>对<span style="color: black;">每一个</span>人的体液进行分析,<span style="color: black;">每一个</span>人的基因组都将被<span style="color: black;">没</span>声、<span style="color: black;">有效</span>地读取,每月读取数次;<span style="color: black;">她们</span>的<span style="color: black;">全部</span>基因组将被测序,计算机将为每人编目约2万个基因。<span style="color: black;">而后</span>将这些基因与已知的数千种可能的癌症基因进行比较。</span><span style="color: black;">要分析如此<span style="color: black;">海量</span>的原始数据,<span style="color: black;">必须</span>庞大的量子计算机<span style="color: black;">基本</span><span style="color: black;">设备</span>。但<span style="color: black;">这般</span>做的好处是巨大的:<span style="color: black;">能够</span>减少这种可怕的杀手。</span><span style="color: black;">免疫系统的<span style="color: black;">繁杂</span>性和其识别抗原的能力<span style="color: black;">始终</span>是生物学的<span style="color: black;">要紧</span><span style="color: black;">科研</span><span style="color: black;">行业</span>。<span style="color: black;">经过</span>进化,人体<span style="color: black;">已然</span>发展出一套<span style="color: black;">繁杂</span>的机制来识别和消灭入侵的抗原。然而,有时这个系统会出错,<span style="color: black;">引起</span><span style="color: black;">自己</span>免疫性<span style="color: black;">疾患</span><span style="color: black;">或</span><span style="color: black;">没</span>法识别和攻击癌细胞。</span><span style="color: black;">识别危险抗原的<span style="color: black;">全部</span>过程纯粹是一个量子力学过程。传统的数字计算机<span style="color: black;">没</span>法重现免疫系统正常工作时<span style="color: black;">必要</span>在分子水平上<span style="color: black;">出现</span>的一系列<span style="color: black;">繁杂</span>事件。</span><span style="color: black;">量子计算<span style="color: black;">供给</span>了一个全新的视角,可能<span style="color: black;">帮忙</span><span style="color: black;">咱们</span>深入理解免疫系统的工作原理,并<span style="color: black;">研发</span>出更有效的治疗<span style="color: black;">办法</span>来对抗癌症等<span style="color: black;">疾患</span>。</span><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"><span style="color: black;"><strong style="color: blue;">量子计算机与CRISPR技术的结合,有望<span style="color: black;">极重</span><span style="color: black;">加强</span>治疗遗传<span style="color: black;">疾患</span>的能力</strong>。</span><span style="color: black;">量子计算机<span style="color: black;">经过</span>其强大的数据处理能力,能够精确识别并分析<span style="color: black;">繁杂</span>的遗传<span style="color: black;">疾患</span>,而CRISPR技术则<span style="color: black;">供给</span>了一种创新的手段,<span style="color: black;">准许</span><span style="color: black;">专家</span>在基因层面进行“剪切”和“粘贴”,直接修复或修改<span style="color: black;">疾患</span><span style="color: black;">关联</span>的基因。</span><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"><span style="color: black;">自20世纪80年代<span style="color: black;">败兴</span>,基因治疗的概念——<span style="color: black;">经过</span>修复损坏的基因来治疗<span style="color: black;">疾患</span>,就已激发了人们的<span style="color: black;">极重</span>兴趣。</span><span style="color: black;">随着<span style="color: black;">最少</span>1万种已知遗传<span style="color: black;">疾患</span>的存在,<span style="color: black;">专家</span>们<span style="color: black;">始终</span>梦想着能够改写生命的基本代码,从而纠正自然界的缺陷,<span style="color: black;">乃至</span><span style="color: black;">提高</span>人类的健康和智力。</span><span style="color: black;"><span style="color: black;">初期</span>的基因治疗<span style="color: black;">科研</span>尝试着<span style="color: black;">处理</span>由单个或<span style="color: black;">少许</span>几个基因错误<span style="color: black;">导致</span>的遗传性<span style="color: black;">疾患</span>,如镰状细胞性贫血(许多非裔美国人患病)、囊性纤维化(许多北欧人患病)和泰-萨克斯病(阿什肯纳兹犹太人患病)等。</span><span style="color: black;">这些<span style="color: black;">疾患</span>的治疗策略<span style="color: black;">包含</span>将修复基因<span style="color: black;">经过</span>改造后的<span style="color: black;">没</span>害病毒携带,注入<span style="color: black;">病人</span><span style="color: black;">身体</span>,类似于免疫疗法的<span style="color: black;">办法</span>。</span><span style="color: black;">这些基因工程<span style="color: black;">实验</span>是以类似于免疫疗法的方式进行的。<span style="color: black;">首要</span>,将所需基因<span style="color: black;">移植</span>一种<span style="color: black;">没</span>害的病毒中,并对其进行改造,使其<span style="color: black;">没</span>法攻击宿主。<span style="color: black;">而后</span>将病毒注射到病人<span style="color: black;">身体</span>,<span style="color: black;">这般</span>病人就感染了所需的基因。</span><span style="color: black;">不幸的是,并发症<span style="color: black;">火速</span>就<span style="color: black;">显现</span>了。例如,人体<span style="color: black;">常常</span>会将病毒视为异物并对其进行攻击,从而给病人带来不必要的副<span style="color: black;">功效</span>。1999年,一名病人在一次<span style="color: black;">实验</span>后死亡,使许多人对基因疗法的<span style="color: black;">期盼</span>破灭了。资金<span style="color: black;">起始</span>枯竭、<span style="color: black;">科研</span>计划大幅缩减、<span style="color: black;">实验</span>被重新审查或停止。</span><span style="color: black;">但随着对CRISPR技术的<span style="color: black;">发掘</span>和发展,<span style="color: black;">状况</span><span style="color: black;">起始</span><span style="color: black;">出现</span>变化。</span><span style="color: black;"><span style="color: black;">科研</span>人员<span style="color: black;">发掘</span>,细菌<span style="color: black;">经过</span>一种精巧的机制来防御病毒攻击,即<span style="color: black;">经过</span>CRISPR系统精确地切割入侵病毒的DNA。这一<span style="color: black;">发掘</span>促<span style="color: black;">成为了</span>CRISPR技术的<span style="color: black;">研发</span>,Emmanuelle Charpentier和Jennifer Doudna<span style="color: black;">因此呢</span><span style="color: black;">得到</span>了2020年的诺贝尔奖,以表彰<span style="color: black;">她们</span>在这一<span style="color: black;">行业</span>的贡献。</span><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"><span style="color: black;"><span style="color: black;">将来</span>,利用基因治疗和CRISPR技术的进步,人们或许<span style="color: black;">能够</span><span style="color: black;">经过</span>免疫疗法和量子计算机修复基因中的拼写错误,从而治愈多种癌症,<span style="color: black;">同期</span>减少致命的副<span style="color: black;">功效</span>。</span><span style="color: black;">下面列出了<span style="color: black;">有些</span>CRISPR有<span style="color: black;">期盼</span>治疗的遗传<span style="color: black;">疾患</span>:</span><span style="color: black;"><strong style="color: blue;">1)癌症</strong></span><span style="color: black;">在宾夕法尼亚大学,<span style="color: black;">专家</span>们利用 CRISPR 技术移除了让癌细胞躲避人体免疫系统的三个基因。<span style="color: black;">而后</span>,<span style="color: black;">她们</span>又添加了另一个<span style="color: black;">能够</span><span style="color: black;">帮忙</span>免疫系统识别肿瘤的基因。<span style="color: black;">专家</span>们<span style="color: black;">发掘</span>,这种<span style="color: black;">办法</span>虽然<span style="color: black;">没</span>效,但很安全,即<span style="color: black;">运用</span>于晚期癌症<span style="color: black;">病人</span><span style="color: black;">亦</span>是如此。</span><span style="color: black;"><span style="color: black;">另外</span>,瑞士-美国生物技术<span style="color: black;">机构</span>CRISPR Therapeutics AG 正在对130名血癌<span style="color: black;">病人</span>进行<span style="color: black;">实验</span>。这些<span style="color: black;">病人</span>正在接受免疫疗法的治疗,该疗法利用CRISPR修改<span style="color: black;">病人</span>的DNA。</span><span style="color: black;"><strong style="color: blue;">2)镰状细胞性贫血</strong></span><span style="color: black;">CRISPR Therapeutics<span style="color: black;">机构</span>还从镰状细胞性贫血<span style="color: black;">病人</span>身上采集骨髓干细胞。<span style="color: black;">而后</span>,该<span style="color: black;">机构</span>正在改变这些细胞,使其产生胎儿血红蛋白。<span style="color: black;">而后</span>将这些经过处理的细胞<span style="color: black;">移植</span>人体。</span><span style="color: black;"><strong style="color: blue;">3)艾滋病</strong></span><span style="color: black;"><span style="color: black;">因为</span>CCR5基因突变,<span style="color: black;">少许</span>人天生就对艾滋病病毒有免疫力。正常<span style="color: black;">状况</span>下,该基因产生的蛋白质会为艾滋病病毒进入细胞创造一个入口。然而,在这些罕见的个体中,CCRS基因<span style="color: black;">出现</span>了突变,<span style="color: black;">因此呢</span>艾滋病病毒<span style="color: black;">没</span>法侵入细胞。<span style="color: black;">针对</span><span style="color: black;">无</span><span style="color: black;">出现</span>这种突变的人,<span style="color: black;">专家</span>们正在利用CRISPR技术有<span style="color: black;">认识</span>地编辑CCRS基因中的突变,使病毒<span style="color: black;">没</span>法再进入<span style="color: black;">她们</span>的细胞。</span><span style="color: black;"><strong style="color: blue;">4)囊性纤维化</strong></span><span style="color: black;">囊性纤维化是一种影响<span style="color: black;">呼气</span>系统和胃肠道系统的较<span style="color: black;">平常</span><span style="color: black;">疾患</span>,<span style="color: black;">病人</span>很少能活过40岁。它<span style="color: black;">是由于</span>CFTR基因突变<span style="color: black;">导致</span>的。</span><span style="color: black;">荷兰的<span style="color: black;">大夫</span>利用CRISPR技术修复了这种基因,<span style="color: black;">况且</span>不会产生副<span style="color: black;">功效</span>。马萨诸塞州的生物技术<span style="color: black;">机构</span>Editas Medicine Inc.、Beam Therapeutics以及CRISPR Therapeutics等其他集团<span style="color: black;">亦</span>在计划利用CRISPR治疗囊性纤维化。</span><span style="color: black;"><strong style="color: blue;">5)亨廷顿氏病</strong></span><span style="color: black;">这种遗传病<span style="color: black;">一般</span>会<span style="color: black;">引起</span><span style="color: black;">痴傻</span>、精神<span style="color: black;">疾患</span>、认知<span style="color: black;">阻碍</span>和其他衰弱症状。</span><span style="color: black;"><span style="color: black;">据述</span>,1692年塞勒姆女巫审判中受到迫害的<span style="color: black;">有些</span><span style="color: black;">女性</span>就<span style="color: black;">身患</span>这种<span style="color: black;">疾患</span>。这种<span style="color: black;">疾患</span>是DNA中亨廷顿基因重复的结果。费城儿童医院的<span style="color: black;">专家</span>们正在利用CRISPR治疗这种<span style="color: black;">疾患</span>。</span><span style="color: black;">然而,面对如此庞大和<span style="color: black;">繁杂</span>的遗传信息,传统计算能力难以胜任。量子计算机以其超越传统计算机的处理能力,<span style="color: black;">作为</span><span style="color: black;">处理</span>这一挑战的<span style="color: black;">重要</span>。</span><span style="color: black;"><span style="color: black;">经过</span>分析<span style="color: black;">海量</span>遗传数据,量子计算机有<span style="color: black;">潜能</span>揭示<span style="color: black;">繁杂</span><span style="color: black;">疾患</span>的遗传机制,为CRISPR技术<span style="color: black;">供给</span>精确的编辑<span style="color: black;">目的</span>。</span><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"><span style="color: black;">总之,<strong style="color: blue;">量子计算机或将<span style="color: black;">作为</span>抗癌<span style="color: black;">科研</span>的利器</strong>。<span style="color: black;">经过</span>其强大的数据处理能力,有朝一日可能实<span style="color: black;">此刻</span>癌症形成的<span style="color: black;">初期</span>,<span style="color: black;">乃至</span>是数年或数十年之前,<span style="color: black;">经过</span>液体活检技术检测出癌细胞的微小迹象。</span><span style="color: black;">想象一下,在<span style="color: black;">咱们</span>的浴室里,量子计算机能够扫描并分析<span style="color: black;">全部</span>人群,<span style="color: black;">捉捕</span>到癌症的最初信号,并构建起一个庞大的国家级基因组数据库。</span><span style="color: black;"><span style="color: black;">倘若</span>癌症确实发展成型,<strong style="color: blue;">量子计算机的介入还可能革新<span style="color: black;">咱们</span>的免疫系统,赋予其对抗数百种癌症的能力</strong>。结合基因疗法、免疫疗法、量子计算以及CRISPR技术,<span style="color: black;">咱们</span>有可能在分子层面上精确地编辑癌症基因,既能有效治疗癌症,又能大幅降低免疫疗法的罕见但可能致命的副<span style="color: black;">功效</span>。</span><span style="color: black;"><span style="color: black;">科研</span><span style="color: black;">显示</span>,可能<span style="color: black;">仅有</span><span style="color: black;">少许</span><span style="color: black;">重要</span>基因,如p53,与大<span style="color: black;">都数</span>癌症的形成<span style="color: black;">相关</span>。<strong style="color: blue;"><span style="color: black;">经过</span>量子计算机<span style="color: black;">供给</span>的深入见解与基因疗法的结合,<span style="color: black;">咱们</span>或许能在根源上阻止癌症的<span style="color: black;">出现</span></strong>。</span><span style="color: black;">虽然癌症的形成路径多种多样,<span style="color: black;">咱们</span>可能仍旧会面临<span style="color: black;">有些</span>癌症的威胁,但<span style="color: black;">将来</span>对待癌症的态度或许会像对待普通感冒<span style="color: black;">同样</span>——视其为一种可预防且易于管理的病症。</span><span style="color: black;">更为激动人心的是,<strong style="color: blue;">人工智能与量子计算的结合为<span style="color: black;">咱们</span><span style="color: black;">供给</span>了新的防御线——能够设计出<span style="color: black;">形成</span><span style="color: black;">咱们</span>身体的蛋白质</strong>。这种技术的融合,有<span style="color: black;">潜能</span>不仅治愈当前的不治之症,还能重塑生命本身。</span>参考链接:https://www.businesswire.com/news/home/20240220020899/en/For-the-First-Time-Quantum-Enhanced-Generative-AI-Generates-Viable-Cancer-Drug-Candidateshttps://thequantuminsider.com/2024/02/20/quantum-enhanced-generative-ai-generates-viable-cancer-drug-candidates/https://www.nobelprize.org/prizes/chemistry/2020/prize-announcement/https://www.noemamag.com/quantum-computing-could-make-cancer-more-like-the-common-cold/<img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"><span style="color: black;"><span style="color: black;">关联</span>阅读:</span><a style="color: black;"><span style="color: black;">中科大杜江峰团队将金刚石量子传感器用于癌症诊断</span></a><a style="color: black;"><span style="color: black;">日本量子科</span></a>研团队提出新的癌症疗法<a style="color: black;"><span style="color: black;">量子计算用于探索癌症个性化治疗</span></a><a style="color: black;"><span style="color: black;">量子<span style="color: black;">设备</span>学习将首次用于癌症治疗!CQC再下一城</span></a><a style="color: black;"><span style="color: black;">是时候实现医疗量子化了——</span></a><span style="color: black;">#</span><a style="color: black;">光子盒视频号开通啦!你要的,<span style="color: black;">这儿</span>全都有</a><span style="color: black;">#</span><span style="color: black;">每周一到周五,<span style="color: black;">咱们</span>都将与光子盒的新老<span style="color: black;">伴侣</span>相聚在<span style="color: black;">微X</span>视频号,不见不散!</span><strong style="color: blue;">你可能会<span style="color: black;">错失</span>:</strong><p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><a style="color: black;"><span style="color: black;"><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"></span></a></p><a style="color: black;"><span style="color: black;"><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"></span></a><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;">
系统提示我验证码错误1500次 \~゛, 外链发布社区 http://www.fok120.com/ 哈哈、笑死我了、太搞笑了吧等。 楼主听话,多发外链好处多,快到碗里来!外链论坛 http://www.fok120.com/
页:
[1]