三维地球化学模型构建:以莱州曲家金矿为例
<h1 style="color: black; text-align: left; margin-bottom: 10px;">前言</h1>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">传统地球化学勘查将原生晕和次生晕分布模式各自独立描述,<span style="color: black;">怎样</span>构建原生晕和次生晕之间的空间对应关系,<strong style="color: blue;"><span style="color: black;">创立</span>从原生晕到次生晕联合地球化学勘查模型是覆盖区地球化学勘查急需<span style="color: black;">处理</span>的科学问题</strong>。</p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/d3ff82a930734cbfaf360f378fbd03bc~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=NHc9tkFnybpfw%2F827T8YXVKqJZU%3D" style="width: 50%; margin-bottom: 20px;"></div>
<h1 style="color: black; text-align: left; margin-bottom: 10px;">选题依据及<span style="color: black;">道理</span></h1>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">1、胶东金矿集区</strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">胶东金矿集区已探明金资源储量 5000 余吨,是我国最大、世界第三大金矿集区</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">(宋明春等,2020)。2005 年之后,随着浅部资源日趋枯竭,勘探方向已<span style="color: black;">逐步</span>由浅部转向深部,<strong style="color: blue;">已探明深部超大型金矿床 10 个,大型金矿床 8 个,</strong>其中在 500~2000m 深度范围内累计探明金资源储量达 2700 余吨</p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/a3bbbce49f814f31bb7298ab2f776a27~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=YgPpbPZxVJ4EOWs3o9EWiXnZ3XQ%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">是我国攻深找盲及实现深部找矿重大突破的典型<span style="color: black;">表率</span>(宋英昕等,2017;宋明春,2015;宋明春等,2020;于学峰等,2016)。<strong style="color: blue;">曲家金矿区<span style="color: black;">位置于</span>胶东地区西北部最重要的成矿构造带——焦家断裂带(JJF)。</strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">该矿区<span style="color: black;">海量</span>的地表化探数据、钻孔岩芯数据、矿床成因机理<span style="color: black;">科研</span>成果等,为构建和深化金矿三维地球化学模型<span style="color: black;">供给</span>了强有力支撑。金矿三维地球化学模型构建<span style="color: black;">触及</span>成矿过程中及其后深部成矿元素以何种形式、由何种通道运移至浅部形成原生晕,</p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/120f5f7dbc694be38099d3ba8203962b~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=e%2F2K70dn32MxA74F1I62qlTaj%2B0%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">以及随后在表生风化<span style="color: black;">功效</span>下原生晕又是<span style="color: black;">怎样</span>在地表土壤或水系沉积物中形成<span style="color: black;">反常</span>,<strong style="color: blue;">换而言之,即厘定地表<span style="color: black;">反常</span>形成的内、外生<span style="color: black;">掌控</span><span style="color: black;">原因</span>,构建成矿流体-矿体-原生晕-次生晕完整证据链</strong>,<span style="color: black;">针对</span>解释地表化探<span style="color: black;">反常</span>成因及其深部继承关系<span style="color: black;">供给</span>强有力的实证性理论支撑(王学求等,2020;杨德平等,2020)。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">传统地球化学勘查将原生晕和次生晕分布模式各自独立描述,<span style="color: black;">怎样</span>构建原生晕和次生晕之间的空间对应关系,<strong style="color: blue;"><span style="color: black;">创立</span>从原生晕到次生晕联合地球化学勘查模型是覆盖区地球化学勘查急需<span style="color: black;">处理</span>的科学问题</strong>。</p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/94a2739cdcb6448ebaf85b5f25781b88~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=u8%2BZbgK%2B3VzEh7JMRyPDZZKy858%3D" style="width: 50%; margin-bottom: 20px;"></div><strong style="color: blue;">地球化学勘查模型</strong>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">过去地球化学勘查模型都是二维模型,<strong style="color: blue;">既原生晕的剖面模型和次生晕的曲线模型,<span style="color: black;">创立</span>三维模型是精细刻画地球化学<span style="color: black;">反常</span>空间几何形态亟待<span style="color: black;">处理</span>的技术问题。</strong>基于<span style="color: black;">以上</span>科学与技术问题,本论文以近年在胶东焦家成矿带覆盖区<span style="color: black;">发掘</span>的曲家金矿为例</p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/b3ec4092a8444b0bbac3b6af0fc1b606~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=yS7mjm8%2Bcgw50kXXy3CxdpzBuF8%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">开展从钻孔原生晕到地表次生晕联合三维地球化学探测模型<span style="color: black;">科研</span>,以便为覆盖区找矿<span style="color: black;">供给</span>新的技术手段和理论支撑。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">三维地球化学建模能够集成<span style="color: black;">区别</span>类型和<span style="color: black;">区别</span>尺度的数据,<span style="color: black;">经过</span>对曲家金矿各元素进行三维地球化学模式精细表征,<strong style="color: blue;">能够从宏观的三维立体<span style="color: black;">方向</span>加深对矿区地质、地球化学过程的认识<span style="color: black;">针对</span>深入认识金矿、<span style="color: black;">反常</span>的形成机制</strong>、元素组合和指示元素的提取、<span style="color: black;">反常</span>成因解释以及深部隐伏金矿靶区预测等<span style="color: black;">拥有</span>重要<span style="color: black;">道理</span>。</p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/cf18c07530f0475faa6b272bbbca6995~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=%2B4ktsw9224HRE2pwU0O5k2K50nA%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">从而</span><span style="color: black;">针对</span>推动胶东深部找矿示范区建设、<strong style="color: blue;"><span style="color: black;">提高</span>我国深部矿产资源探测技术水平和找矿效果<span style="color: black;">拥有</span>重要的<span style="color: black;">指点</span><span style="color: black;">道理</span></strong>。本论文以国家重点<span style="color: black;">开发</span>计划专项项目“穿透性地球化学勘查技术”(2016YFC0600600)、国家自然科学基金 (41903071 和 42002108)和河北省重大科技成果转化项目(19057411Z)为依托</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">过去地球化学勘查模型都是二维模型,即原生晕的剖面模型和次生晕的曲线模型,<span style="color: black;">创立</span>三维模型是精细刻画地球化学<span style="color: black;">反常</span>空间几何形态急需<span style="color: black;">处理</span>的技术问题。<strong style="color: blue;">基于<span style="color: black;">以上</span>科学与技术问题,本论文以近年在胶东焦家成矿带覆盖区<span style="color: black;">发掘</span>的曲家金矿为例</strong></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/55aed77eb8554bb0b6fa79c3ccfcf023~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=UvIzOITuqWKJmJzT31p%2FtcB8UDM%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">开展从钻孔原生晕到地表次生晕联合三维地球化学探测模型<span style="color: black;">科研</span>,以便为覆盖区找矿<span style="color: black;">供给</span>新的技术手段和理论支撑。胶东金矿集区是中国<span style="color: black;">第1</span>和世界第三大金矿集区。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">本文以莱州曲家金矿为例,基于 9 条勘探线共计 38 个钻孔、1130 件钻孔岩芯样品和地表 652 件土壤微细粒样品,<span style="color: black;">经过</span><span style="color: black;">运用</span> Micromine 软件构建成矿和指示元素三维地球化学模型,<strong style="color: blue;"><span style="color: black;">针对</span>解释地表化探<span style="color: black;">反常</span>成因及与深部继承关系<span style="color: black;">供给</span>强有力的实证性理论支撑。</strong></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/49f15500ec614422a46d032c8528c4f1~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=EjxGa1CQWOp7bNQP%2Fwhl3Fui0K0%3D" style="width: 50%; margin-bottom: 20px;"></div>
<h1 style="color: black; text-align: left; margin-bottom: 10px;"><span style="color: black;">科研</span>内容</h1><strong style="color: blue;">A、B矿床</strong>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">外来覆盖层 外来覆盖层隐伏矿是当今地球化学勘探面临的<span style="color: black;">重点</span>挑战之一(王学求等,2012a, 2012b,2016;龚庆杰等,2020)。王学求等(2012a)总结了<span style="color: black;">区别</span>矿体产出类型和相应的化探<span style="color: black;">办法</span>技术。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">其中,A 类矿床是出露矿,B 类矿床是地球化学出露矿,C 类矿床上方覆盖物是原地风化残积物,其继承了矿体组分,</span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">因此呢</span>针对 A 类、B 类和 C 类矿床<span style="color: black;">能够</span>采用土壤、岩石<span style="color: black;">测绘</span>、水系沉积物<span style="color: black;">测绘</span>或原生晕元素分带等传统地球化学</span><span style="color: black;">勘探<span style="color: black;">办法</span>对其<span style="color: black;">反常</span>加以识别。</span></strong></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/a6017dafbdd84419bd47792cf40b6cff~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=T%2BBxuDJMLzLBoxi9XpBUwtLMp%2FI%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">D类矿床<span style="color: black;">表率</span>的是外来运积物(如运积土壤、风成沙、黄土、冲洪积物等)覆盖的隐伏矿床,这类矿床上覆沉积物与下伏矿床<span style="color: black;">成份</span><span style="color: black;">无</span>任何关系(新疆金窝子 210 金矿)。E 类矿床则是矿床被沉积岩或火山岩所覆盖(如奥林匹 克坝铜铀金银矿)。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">F 类矿床<span style="color: black;">表率</span>产出于盆地中的沉积矿床或盆地底部的热液矿床(如鄂尔多斯盆地砂岩型铀矿、紫金山悦洋盆地低温热液型银-金-铀矿)。</span><strong style="color: blue;"><span style="color: black;">而 D-F 类矿床则<span style="color: black;">因为</span>外来覆盖层的存在<span style="color: black;">引起</span>传统地球化学<span style="color: black;">办法</span><span style="color: black;">没法</span>有效识别<span style="color: black;">关联</span>矿致<span style="color: black;">反常</span></span></strong><span style="color: black;">,<span style="color: black;">因此呢</span>必须采用特殊手段提取或<span style="color: black;">捕捉</span>下伏隐伏矿<span style="color: black;">成份</span>穿透盖层迁移至地表的信息以指示隐伏矿外来覆盖层的存在会<span style="color: black;">引起</span>两种情形</span></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/041c15f92aa148d5bf5389a2d1e3724f~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=bg%2BofRUnEUL7cGTGhnOP1npS0%2FI%3D" style="width: 50%; margin-bottom: 20px;"></div><strong style="color: blue;"><span style="color: black;">风化产物</span></strong>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">一是出露原生晕风化产物<span style="color: black;">出现</span>横向分散迁移,</span><strong style="color: blue;"><span style="color: black;">在远离原生晕的部位形成次生<span style="color: black;">反常</span></span></strong><span style="color: black;">,<span style="color: black;">从而</span>削弱了其对隐伏矿勘查的指示<span style="color: black;">道理</span>;二是厚覆盖层的存在会<span style="color: black;">引起</span>原生晕正上方存在弱<span style="color: black;">反常</span>,<span style="color: black;">乃至</span>是无<span style="color: black;">反常</span>。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">而这种弱<span style="color: black;">反常</span><span style="color: black;">因为</span>区域强<span style="color: black;">反常</span>的存在,常常被忽略</span></strong><span style="color: black;">。无论是以上哪种情形,都对隐伏矿的勘探<span style="color: black;">导致</span><span style="color: black;">剧烈</span>干扰。针对这一挑战,化探学者<span style="color: black;">亦</span>提出了<span style="color: black;">有些</span><span style="color: black;">处理</span><span style="color: black;">方法</span>,如地气<span style="color: black;">测绘</span>(Kristiansson and Malmqvist,1987;Kristiansson et al.,1990;王学求和谢学锦,1995;童纯函和李巨初,1999)、土壤微细粒<span style="color: black;">测绘</span>(Wang et al.,1997;</span></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/86845d6628fc4473a85b357d20f1ed00~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=UWd8%2BGb1DCSNJLJt1Gb8GjGOqlg%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Zhang et al.,2020a;张必敏等,2016;刘汉粮等,2015,2016,2018)、偏提取<span style="color: black;">测绘</span>(王学求和程志中,1996;Wang,1998;叶荣等,2003)等</span><span style="color: black;">。</span><strong style="color: blue;"><span style="color: black;">原生金矿或金矿化在表生<span style="color: black;">要求</span>下,<span style="color: black;">因为</span><span style="color: black;">理学</span>化学等风化<span style="color: black;">功效</span>金被释放出来,</span></strong><span style="color: black;">而原生金矿或金矿化中金的存在状态为Au0 或Au、Ag等合金,总体上是不溶于表生水的;少量是离子态的。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">然则</span>Au0 或在自然<span style="color: black;">要求</span>下<span style="color: black;">能够</span>被氧化形成Au+ 或Au3+Emmons(1911)和Boyle(1979)推断,在酸性<span style="color: black;">要求</span>下(如硫化物分 解产生硫酸)<span style="color: black;">经过</span>产生游离的氯气<span style="color: black;">做为</span>媒介将Au0 氧化为可溶解Au3+络合物。</span></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/c0ee13e8f1e14ad1889d0ab76d6fbefa~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=VTHqYYJqVtnuQJRl%2Fl71LM8%2BOys%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Ta et al.(2015)实验<span style="color: black;">显示</span>,</span><strong style="color: blue;"><span style="color: black;">在酸性环境下水钠锰矿<span style="color: black;">能够</span>将Au+氧化为Au3+</span></strong><span style="color: black;">,中性水的流入将吸附在铁锰矿物上的Au3+快速释放进入溶液中活化迁移,</span><strong style="color: blue;"><span style="color: black;">这<span style="color: black;">亦</span>是澳大利亚盐湖环境下<span style="color: black;">发掘</span>Au3+络合物的一个<span style="color: black;">恰当</span>解释;</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Au与锰联吡啶反应则<span style="color: black;">显示</span>生物成因类似物<span style="color: black;">亦</span>能够氧化Au,<span style="color: black;">然则</span>需要进一步<span style="color: black;">科研</span>氧化过程的中间产物和<span style="color: black;">最后</span>产物。</span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">因为</span>离子金<span style="color: black;">拥有</span>极高的离子电位,<span style="color: black;">因此呢</span>以独立离子状态存在的可能性低,<span style="color: black;">重点</span>与水中的<span style="color: black;">各样</span>配体或离子等形成络合物。</span></strong></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/01ef41a25d7b47d2a24e88268b1c894f~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=fdm42RdMyxpiEAyloG1gZWggryU%3D" style="width: 50%; margin-bottom: 20px;"></div><strong style="color: blue;"><span style="color: black;">氧化还原反应</span></strong>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">这些金<span style="color: black;">能够</span>在化学和生物化学<span style="color: black;">功效</span>下<span style="color: black;">出现</span>氧化还原,并在有利的<span style="color: black;">要求</span>下与自然界中的配体络合以络合物或螯合物的形式迁移。</span><strong style="color: blue;"><span style="color: black;">简而言之,原生金矿在化学风化、微生物以及植物等<span style="color: black;">功效</span>下<span style="color: black;">出现</span>活化、迁移和再沉淀,金<span style="color: black;">重点</span>与含硫配体、卤族离子以及氰化物等形成络合物<span style="color: black;">或</span>以纳米金胶体的形式<span style="color: black;">出现</span>运移</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">在迁移过程中<span style="color: black;">理学</span>化学<span style="color: black;">要求</span><span style="color: black;">出现</span>变化失稳<span style="color: black;">出现</span>还原、沉淀(Rimstidt and Vaughan,2003;Kleinjan et al.,2005;Melashvili et al.,2015);另一方面,原生金矿受<span style="color: black;">理学</span>风化<span style="color: black;">功效</span>,会在有利的部位经重力分异<span style="color: black;">功效</span>以及叠加次生富集形成砂金矿<span style="color: black;">或</span>含金地球化学<span style="color: black;">反常</span>。</span></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/c8af4c6d78414e3a972038a2cbffb808~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=RRS66DLBs%2BAONXS0Lxjk29JIrqA%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">金在表生<span style="color: black;">要求</span>下<span style="color: black;">能够</span><span style="color: black;">出现</span>横向(如地表水流或地下水流动)和垂向运移(如纳米颗粒本身<span style="color: black;">或</span>以地气、降水淋滤<span style="color: black;">功效</span>等),</span><strong style="color: blue;"><span style="color: black;">并在特定部位沉淀(如钙质结砾岩、铁结砾岩、不整合面等)或在特定介质中形成<span style="color: black;">反常</span>(如地气和植物等)</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">金表生地球化学<span style="color: black;">行径</span>-沉淀</span><strong style="color: blue;"><span style="color: black;">含硫配体氧化破坏</span></strong><span style="color: black;">:在酸性<span style="color: black;">要求</span>下,23 2−被源于氢氧化铁中的3+氧化而分解(Rimstidt and Vaughan,2003),<span style="color: black;">然则</span>在碱性<span style="color: black;">要求</span>下相对稳定,虽然会<span style="color: black;">出现</span>缓慢氧化 36 2− → 3 2− → 4 2− (方程式(1–18)–(1–20))(Rimstidt and Vaughan,2003;Melashvili et al.,2015);</span></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/90f5131ea6064510ba2cd46528e1240d~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=v35medtaZyW7m9sa6KFx0dyk98o%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">同期</span>值得<span style="color: black;">重视</span>的是,23 −在向下迁移的过程中,23 2−被还原<span style="color: black;">亦</span>会<span style="color: black;">引起</span>形成胶体金(Benedetti and Boulegue,1991)<span style="color: black;">或</span>纳米金硫化物<span style="color: black;">或</span>元素金,</span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">从而</span>在黄钾铁矾中沉淀</span></strong><span style="color: black;">,随后随地质时间演化<span style="color: black;">保存</span>在铁帽中(Shuster et al.,2014)。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">而Au(HS)2 -</span><strong style="color: blue;"><span style="color: black;">则会<span style="color: black;">因为</span>pH和氧化还原电位的微小变化而与硫化物等在表生带的底部沉淀</span></strong><span style="color: black;">。这些过程已有众多学者<span style="color: black;">经过</span>实验室<span style="color: black;">科研</span>得到证实(Webster,1986;Rimstidt and Vaughan,2003;Melashvili et al.,2015)。这些过程可能会有微生物参与,并且<span style="color: black;">重点</span>是<span style="color: black;">出现</span>在硫化物氧化表面酸性环境。</span></p>
<h1 style="color: black; text-align: left; margin-bottom: 10px;">结论</h1>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">基于胶东莱州曲家金矿土壤微细粒和钻孔岩芯地球化学数据进行应用统计分析和三维地球化学建模,本文取得如下新认识:</span></p><strong style="color: blue;"><span style="color: black;"><span style="color: black;">经过</span>成矿元素和指示元素连续空间分布三维地球化学模型</span></strong>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">展示矿体-原生晕-地表<span style="color: black;">反常</span>完整几何形态:在原生晕中 Au、Ag、TFe2O3、S 和 Bi 沿控矿构造断裂带呈稳定连续高含量分布,</span><strong style="color: blue;"><span style="color: black;">Cl 在垂向上存在连续分布</span></strong><span style="color: black;">,Hg 在垂向上呈不连续的串珠状分布,并<span style="color: black;">伴同</span>着低缓 Au <span style="color: black;">反常</span>和高含量 Pb <span style="color: black;">反常</span>;</span></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/f2a25363730d4b5aaafd6005fec874c9~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=EzfZ5xQOlPwmQWDwCpFwlSvQP4s%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">在矿体上方和构造带上方地表微细粒土壤中存在 Au-Ag-Hg 组合<span style="color: black;">反常</span>,</span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">显示</span> Au、Ag、Hg 既<span style="color: black;">出现</span>了沿主断裂带的轴向迁移,又<span style="color: black;">出现</span>了垂向迁移</span></strong><span style="color: black;">。这一模型为地表化探<span style="color: black;">反常</span>的成因及与深部矿的继承关系<span style="color: black;">供给</span>强有力的实证性理论依据。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">2地球化学数据</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">.随着岩石风化,Au、Ag 在表生风化<span style="color: black;">功效</span>下<span style="color: black;">出现</span>活化、迁移和再富集,在土壤中被粘土矿物等吸附形成次生<span style="color: black;">反常</span>。指示元素 Hg 则<span style="color: black;">更易</span>在矿体上方形成强<span style="color: black;">反常</span>,<span style="color: black;">因为</span>其<span style="color: black;">拥有</span>类气体性质,基本不<span style="color: black;">出现</span>横向迁移。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">基于土壤微细粒地球化学数据 alr(SiO2)变换后的因子分析,得出 F4 alr(Au-Ag 组合)是曲家金矿区土壤化探成矿<span style="color: black;">关联</span>元素组合</span></strong><span style="color: black;">。F2alr(Hg-Br-I-S-Se-Sn 组合)是深部热液流体迁移至地表浅部的产物,<span style="color: black;">能够</span><span style="color: black;">做为</span>指示元素。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">因此呢</span>,土壤微细粒 Au-Ag-Hg 组合<span style="color: black;">反常</span><span style="color: black;">指的是</span>示深部隐伏矿有效指标。土壤微细粒<span style="color: black;">反常</span>和矿体(或原生晕)之间的高度吻合性进一步从三维立体<span style="color: black;">方向</span>证明在暖温带湿润气候区土壤微细粒<span style="color: black;">测绘</span><span style="color: black;">办法</span>是一种有效的深穿透地球化学勘查<span style="color: black;">办法</span></span></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/ef0c99a2c9d84a208e1ccfc93c4e1949~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1728818234&x-signature=fTDrD9YIcQE%2BkPeur7s84QFc9u4%3D" style="width: 50%; margin-bottom: 20px;"></div>
太棒了、厉害、为你打call、点赞、非常精彩等。 你的话语如春风拂面,让我感到无比温暖。
页:
[1]