lbk60ox 发表于 2024-9-30 05:47:05

【干货】常用的6种数据分析办法


    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">点击蓝字,关注<span style="color: black;">咱们</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q0.itc.cn/q_70/images03/20240914/94bc28637b9742dba505d8def5f45b99.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">分析<span style="color: black;">办法</span>简单<span style="color: black;">来讲</span>,<span style="color: black;">便是</span>有条理的思路,它有助于<span style="color: black;">咱们</span>在分析问题时将零散的想法整理成有条理的思路,并且能<span style="color: black;">帮忙</span><span style="color: black;">咱们</span>全面的、多方位的分析问题。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">01 </p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">对比分析</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q5.itc.cn/q_70/images03/20240914/39535520028b4f20b9ad688cad81caed.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">对比分析<span style="color: black;">便是</span>比较两个<span style="color: black;">关联</span>的指标,以展示规模、水平、速度等。<span style="color: black;">平常</span>的对比<span style="color: black;">办法</span>有时间对比(如同比、环比、定基比)、空间对比和标准对比。<span style="color: black;">例如</span>,本周和上周的对比是环比,本月第<span style="color: black;">1星期</span>和上月第<span style="color: black;">1星期</span>的对比是同比,所有数据和今年第<span style="color: black;">1星期</span>的对比是定基比。<span style="color: black;">这般</span><span style="color: black;">能够</span>分析业务增长和速度。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q2.itc.cn/q_70/images03/20240914/e33c58f8e05e42b088b8eea3a0536fe2.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">02 </p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">聚类分析</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q6.itc.cn/q_70/images03/20240914/7853665910a44107a9130108d6031614.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">聚类分析<span style="color: black;">指的是</span>将数据对象的集合分组为由类似的对象<span style="color: black;">构成</span>的多个类的分析过程。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">聚类分析直观且简单,<span style="color: black;">重点</span>用于用户、页面或内容、<span style="color: black;">源自</span>的<span style="color: black;">归类</span>。例如,在页面分析中,<span style="color: black;">能够</span><span style="color: black;">经过</span>聚类分析<span style="color: black;">类似</span>页面的数据,以<span style="color: black;">加强</span>分析准确性,避免跳出率等指标的不准确。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q7.itc.cn/q_70/images03/20240914/4d9d59e9cbe9479693497191283702b4.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">03 </p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">漏斗分析</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">漏斗分析是业务分析的<span style="color: black;">基本</span>模型,<span style="color: black;">一般</span>用于设置<span style="color: black;">最后</span>转化<span style="color: black;">目的</span>,<span style="color: black;">例如</span>完成交易。它<span style="color: black;">帮忙</span><span style="color: black;">咱们</span><span style="color: black;">发掘</span>两个问题:过程中的漏损点和不必要的过程。<span style="color: black;">经过</span>漏斗分析,<span style="color: black;">咱们</span><span style="color: black;">能够</span>找到并<span style="color: black;">处理</span>这些问题。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q8.itc.cn/q_70/images03/20240914/043dda8247be4380b4617ebdb961feeb.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">漏斗分析<span style="color: black;">经过</span>模拟用户在特定路径上的<span style="color: black;">行径</span>转化过程,<span style="color: black;">能够</span><span style="color: black;">帮忙</span><span style="color: black;">认识</span>用户在各个关键<span style="color: black;">过程</span>的转化率和流失率,定位用户流失的环节和<span style="color: black;">原由</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">04 </p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">同期群分析</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">同期群分析(Cohort Analysis)是对比<span style="color: black;">区别</span>同期群之间的相同指标,如留存率、活跃度等,从而分析用户<span style="color: black;">行径</span>的变化和<span style="color: black;">制品</span>效果。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q9.itc.cn/q_70/images03/20240914/4e9d0ba3d1bf4eceaafc94890bf92040.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">同期群分析在数据运营中很重要,<span style="color: black;">尤其</span>是在互联网运营中。它<span style="color: black;">经过</span>比较相同性质的群体的留存<span style="color: black;">状况</span>,分析影响用户留存的<span style="color: black;">原因</span>。这个<span style="color: black;">办法</span>简单直观,<span style="color: black;">经过</span>图表展示用户在一<span style="color: black;">按时</span>间内的留存或流失<span style="color: black;">状况</span>。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">05 </p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">AB测试</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">AB测试是一种快速验证的<span style="color: black;">办法</span>。<span style="color: black;">例如</span>,<span style="color: black;">发掘</span>漏斗转化中间有问题,尝试改变价格进行测试,一部分用户看到老价格,另一部分看到新价格。<span style="color: black;">倘若</span>新价格<span style="color: black;">加强</span>了转化率,就<span style="color: black;">能够</span>确定新价格是有效的。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q7.itc.cn/q_70/images03/20240914/cadd18b5bdf6471e83eec6c741bedd69.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">由于</span>AB测试是检验来自两个组样本平均数的差异性,从而判断它们各自<span style="color: black;">表率</span>的总体的差异<span style="color: black;">是不是</span><span style="color: black;">明显</span>,<span style="color: black;">因此呢</span><span style="color: black;">运用</span>的是两个总体均值之差的检验。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">06 </p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">埋点分析</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">SDK埋点</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">SDK埋点<span style="color: black;">指的是</span>在软件<span style="color: black;">研发</span>过程中,将第三方统计分析工具的统计代码(SDK,Software Development Kit)嵌入到应用程序的关键位置,以收集和分析应用程序的<span style="color: black;">运用</span>数据。这些数据<span style="color: black;">能够</span><span style="color: black;">帮忙</span><span style="color: black;">研发</span>者<span style="color: black;">认识</span>用户<span style="color: black;">行径</span>、<span style="color: black;">爱好</span>、<span style="color: black;">运用</span>时长等信息,从而优化<span style="color: black;">制品</span>设计、<span style="color: black;">提高</span>用户体验和推广效果。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">SDK</strong>:软件<span style="color: black;">研发</span>工具包,为<span style="color: black;">研发</span>者<span style="color: black;">供给</span>一系列预先编写好的代码库,以方便快速地调用<span style="color: black;">各样</span>功能接口。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">埋点</strong>:在应用程序中<span style="color: black;">插进</span>代码,以收集和分析用户<span style="color: black;">行径</span>数据。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q2.itc.cn/q_70/images03/20240914/fcac70e49aa944c59d1660cb4e360afa.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">埋点分析依赖于足够的<span style="color: black;">基本</span>数据。<span style="color: black;">经过</span>分析用户的浏览<span style="color: black;">行径</span>、轻度交互、重度交互和交易<span style="color: black;">行径</span>,<span style="color: black;">认识</span>用户<span style="color: black;">行径</span>的各个层面。轻度<span style="color: black;">行径</span><span style="color: black;">能够</span>用自助埋点技术,重度<span style="color: black;">行径</span>和交易事件则需<span style="color: black;">经过</span>SDK进行批量埋点。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">为了激励<span style="color: black;">更加多</span>有志于数据分析<span style="color: black;">行业</span>的学子勇攀高峰,CDA 认证考试中心携手各授权合作伙伴,隆重推出</span>“<strong style="color: blue;"><span style="color: black;">开学季奖学金活动</span></strong>”,<span style="color: black;">为您的数据梦想插上翅膀!</span><a style="color: black;"><span style="color: black;">返回<span style="color: black;">外链论坛: http://www.fok120.com</span>,查看<span style="color: black;">更加多</span></span></a></p>

    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">责任编辑:网友投稿</span></p>




m5k1umn 发表于 2024-11-13 01:30:23

谢谢、感谢、感恩、辛苦了、有你真好等。
页: [1]
查看完整版本: 【干货】常用的6种数据分析办法