这可能是2024最全面的人工智能学习路线
<h1 style="color: black; text-align: left; margin-bottom: 10px;">前言</h1>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">此刻</span>人工智能<span style="color: black;">能够</span>说是非常的火热,<span style="color: black;">非常多</span><span style="color: black;">朋友</span><span style="color: black;">亦</span>想学习。但刚<span style="color: black;">起始</span>时总会觉得比较迷茫,不<span style="color: black;">晓得</span><span style="color: black;">怎样</span><span style="color: black;">起始</span>学,<span style="color: black;">亦</span>担心人工智能太难,自己可能学不会。<span style="color: black;">因此</span>这篇<span style="color: black;">文案</span>对<span style="color: black;">怎样</span>去学习人工智能,给出一份学习路线。</p>
<h1 style="color: black; text-align: left; margin-bottom: 10px;"><span style="color: black;">1、</span>入门<span style="color: black;">周期</span></h1>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">在人工智能<span style="color: black;">行业</span>,入门<span style="color: black;">周期</span>的学习重点是<span style="color: black;">把握</span>基本的数学和编程知识。以下是入门<span style="color: black;">周期</span>的学习路线:</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">1. 学习Python编程语言</span></strong></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">Python是人工智能<span style="color: black;">行业</span>最常用的编程语言之一,<span style="color: black;">因此呢</span>学习Python是入门的必要<span style="color: black;">过程</span>。<span style="color: black;">能够</span><span style="color: black;">经过</span>阅读Python编程书籍、参加在线课程<span style="color: black;">或</span>自学来<span style="color: black;">把握</span>Python编程语言。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">python需要学习:</strong></p>python运行环境与<span style="color: black;">研发</span>环境的搭建python<span style="color: black;">基本</span>知识python函数python面向对象编程python科学计算<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">2. 学习数学<span style="color: black;">基本</span></span></strong></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">人工智能<span style="color: black;">行业</span>需要<span style="color: black;">把握</span>的数学知识<span style="color: black;">包含</span>线性代数、微积分和概率论等。<span style="color: black;">能够</span><span style="color: black;">经过</span>阅读数学书籍、参加在线课程<span style="color: black;">或</span>自学来<span style="color: black;">把握</span>这些数学知识。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">数据<span style="color: black;">基本</span>需要学习</strong>:</p>高等数学线性代数概率论最优化求解<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">3. 学习<span style="color: black;">设备</span>学习<span style="color: black;">基本</span></span></strong></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">设备</span>学习是人工智能<span style="color: black;">行业</span>的核心技术之一,<span style="color: black;">因此呢</span>入门<span style="color: black;">周期</span>需要学习<span style="color: black;">设备</span>学习的<span style="color: black;">基本</span>知识。<span style="color: black;">能够</span><span style="color: black;">经过</span>阅读<span style="color: black;">设备</span>学习书籍、参加在线课程<span style="color: black;">或</span>自学来<span style="color: black;">把握</span><span style="color: black;">设备</span>学习的<span style="color: black;">基本</span>知识。</p><span style="color: black;">把握</span>统计学、线性代数、概率论等数学<span style="color: black;">基本</span>知识。<span style="color: black;">认识</span>监督学习、无监督学习、半监督学习等基本概念和算法。<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">4. 学习深度学习<span style="color: black;">基本</span></span></strong></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">深度学习是<span style="color: black;">设备</span>学习的一种,是人工智能<span style="color: black;">行业</span>的重要技术之一。入门<span style="color: black;">周期</span>需要学习深度学习的<span style="color: black;">基本</span>知识,<span style="color: black;">能够</span><span style="color: black;">经过</span>阅读深度学习书籍、参加在线课程<span style="color: black;">或</span>自学来<span style="color: black;">把握</span>深度学习的<span style="color: black;">基本</span>知识。</p><span style="color: black;">把握</span>神经网络的基本概念和结构。<span style="color: black;">认识</span>反向传播算法、激活函数、损失函数等基本知识。<span style="color: black;">把握</span>常用的深度学习框架如TensorFlow、PyTorch等。<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-axegupay5k/6ae4dad02791438db5ab6e9bfa3d87de~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1727530514&x-signature=faCjBsRB10pT%2BguAyL3vO8xl5JE%3D" style="width: 50%; margin-bottom: 20px;"></div>
<h1 style="color: black; text-align: left; margin-bottom: 10px;"><span style="color: black;">2、</span>中级<span style="color: black;">周期</span></h1>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">在中级<span style="color: black;">周期</span>,需要进一步深入学习<span style="color: black;">设备</span>学习和深度学习的知识,并<span style="color: black;">起始</span>实践项目。以下是中级<span style="color: black;">周期</span>的学习路线:</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">1. 学习<span style="color: black;">设备</span>学习算法</span></strong></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">在中级<span style="color: black;">周期</span>,需要深入学习<span style="color: black;">设备</span>学习算法,<span style="color: black;">包含</span>监督学习、无监督学习和强化学习等。<span style="color: black;">能够</span><span style="color: black;">经过</span>阅读<span style="color: black;">设备</span>学习书籍、参加在线课程<span style="color: black;">或</span>自学来<span style="color: black;">把握</span><span style="color: black;">设备</span>学习算法。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">把握</span><span style="color: black;">平常</span>的监督学习算法如线性回归、<span style="color: black;">规律</span>回归、决策树、随机森林等,以及无监督学习算法如聚类、降维等。</p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/044bbff7edc84944b51559986dd0b1d7~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1727530514&x-signature=wm9QRD%2FwSYfCW6IuYbm1nuIK4s4%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">2. 学习深度学习算法</span></strong></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">在中级<span style="color: black;">周期</span>,需要深入学习深度学习算法,<span style="color: black;">包含</span>卷积神经网络、循环神经网络和生成对抗网络等。<span style="color: black;">能够</span><span style="color: black;">经过</span>阅读深度学习书籍、参加在线课程<span style="color: black;">或</span>自学来<span style="color: black;">把握</span>深度学习算法。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">把握</span>卷积神经网络、循环神经网络、生成对抗网络等深度学习算法的原理和应用。</p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/1fa9a56ab0524b78bad2fd65593e579a~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1727530514&x-signature=29fRd5FysgDYDGQQl5Qbsfz7HFk%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">3. 实践项目</span></strong></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">在中级<span style="color: black;">周期</span>,需要<span style="color: black;">起始</span>实践项目,以巩固所学知识。<span style="color: black;">能够</span><span style="color: black;">选取</span><span style="color: black;">有些</span>开源项目<span style="color: black;">或</span>自己设计项目来实践。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">能够</span>从以下方面入手:</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">4. 学习数据处理和可视化</span></strong></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">在实践项目的过程中,需要学习数据处理和可视化的技术,以便更好地理解和分析数据。<span style="color: black;">能够</span><span style="color: black;">经过</span>阅读数据处理和可视化书籍、参加在线课程<span style="color: black;">或</span>自学来<span style="color: black;">把握</span>这些技术。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">把握</span>数据清洗、数据预处理、特征工程等基本技能,以及常用的数据可视化工具如Matplotlib、Seaborn等。</p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/ae89e01599bf4d8faa93b1b9a8cbc1e2~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1727530514&x-signature=5sIc6aXUvR%2FLzc1tY3rDddOiJd8%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;"><span style="color: black;">大众</span>有想系统学习<span style="color: black;">设备</span>学习深度学习数学的,<span style="color: black;">能够</span><a style="color: black;">扫码进群领资料</a>,里面<span style="color: black;">包括</span><span style="color: black;">设备</span>学习深度学习从入门到进阶的数学资料(<span style="color: black;">包括</span>PDF)。</span></strong></span></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/5332e5b4b9ef467289c0f25fa40faa11~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1727530514&x-signature=8jOWI%2BLMpdP4Ca%2BcGtDKJSuWwII%3D" style="width: 50%; margin-bottom: 20px;"></div>
<h1 style="color: black; text-align: left; margin-bottom: 10px;"><span style="color: black;">3、</span>进阶<span style="color: black;">周期</span></h1>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">在进阶<span style="color: black;">周期</span>,需要深入学习人工智能的前沿技术,并<span style="color: black;">起始</span>进行<span style="color: black;">科研</span>和创新。以下是进阶<span style="color: black;">周期</span>的学习路线:</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">1. 学习自然语言处理</span></strong></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">自然语言处理是人工智能<span style="color: black;">行业</span>的重要技术之一,<span style="color: black;">能够</span>用于文本<span style="color: black;">归类</span>、<span style="color: black;">设备</span>翻译和情感分析等。在进阶<span style="color: black;">周期</span>,需要深入学习自然语言处理的知识,<span style="color: black;">能够</span><span style="color: black;">经过</span>阅读自然语言处理书籍、参加在线课程<span style="color: black;">或</span>自学来<span style="color: black;">把握</span>自然语言处理的知识。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">把握</span>自然语言处理的基本概念和技术,如分词、词性标注、命名实体识别、情感分析等,以及常用的自然语言处理工具如NLTK、SpaCy等。</p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/dda4e5c06a9d4e4caa180d86656e9bd6~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1727530514&x-signature=R%2FBxS2KE%2Bpn2XEW0EG5YkMuodO8%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">2. 学习计算机视觉</span></strong></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">计算机视觉是人工智能<span style="color: black;">行业</span>的重要技术之一,<span style="color: black;">能够</span>用于图像<span style="color: black;">归类</span>、<span style="color: black;">目的</span>检测和人脸识别等。在进阶<span style="color: black;">周期</span>,需要深入学习计算机视觉的知识,<span style="color: black;">能够</span><span style="color: black;">经过</span>阅读计算机视觉书籍、参加在线课程<span style="color: black;">或</span>自学来<span style="color: black;">把握</span>计算机视觉的知识。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">把握</span>图像处理、特征提取、<span style="color: black;">目的</span>检测、图像分割等基本技能,以及常用的计算机视觉工具如OpenCV、PyTorch等。</p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p9-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/dd0f87cb79724ceeb7b027002332e4da~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1727530514&x-signature=s7yD58Zm%2Bkz7CCYIJrue4zL8e1M%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">3. 学习强化学习</span></strong></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">强化学习是人工智能<span style="color: black;">行业</span>的重要技术之一,<span style="color: black;">能够</span>用于游戏智能和<span style="color: black;">设备</span>人<span style="color: black;">掌控</span>等。在进阶<span style="color: black;">周期</span>,需要深入学习强化学习的知识,<span style="color: black;">能够</span><span style="color: black;">经过</span>阅读强化学习书籍、参加在线课程<span style="color: black;">或</span>自学来<span style="color: black;">把握</span>强化学习的知识。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">把握</span>马尔可夫决策过程、值函数、策略梯度等基本概念和算法,以及常用的强化学习框架如OpenAI Gym、RLlib等。</p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/9c682aeafcd0422e9b61426742a3ed7a~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1727530514&x-signature=MUi08EbNrRdL%2B2u8RQ9tsMHeD9s%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">4. 进行<span style="color: black;">科研</span>和创新</span></strong></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">在进阶<span style="color: black;">周期</span>,需要<span style="color: black;">起始</span>进行<span style="color: black;">科研</span>和创新,<span style="color: black;">能够</span><span style="color: black;">选取</span>一个<span style="color: black;">拥有</span>挑战性的问题进行<span style="color: black;">科研</span>,并尝试提出新的<span style="color: black;">处理</span><span style="color: black;">方法</span>。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">进行<span style="color: black;">科研</span>和创新需要具备科学<span style="color: black;">科研</span>的基本<span style="color: black;">办法</span>和技能,<span style="color: black;">把握</span>论文阅读、实验设计、数据分析等技能,以及具备创新思维和实践能力。</p>
<h1 style="color: black; text-align: left; margin-bottom: 10px;"><span style="color: black;">4、</span>高级<span style="color: black;">周期</span></h1>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">在高级<span style="color: black;">周期</span>,需要<span style="color: black;">作为</span>人工智能<span style="color: black;">行业</span>的专家,并在该<span style="color: black;">行业</span>做出重要贡献。以下是高级<span style="color: black;">周期</span>的学习路线:</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">1. 学习深度强化学习</span></strong></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">深度强化学习是人工智能<span style="color: black;">行业</span>的前沿技术之一,<span style="color: black;">能够</span>用于自动驾驶和<span style="color: black;">设备</span>人<span style="color: black;">掌控</span>等。在高级<span style="color: black;">周期</span>,需要深入学习深度强化学习的知识,<span style="color: black;">能够</span><span style="color: black;">经过</span>阅读深度强化学习书籍、参加在线课程<span style="color: black;">或</span>自学来<span style="color: black;">把握</span>深度强化学习的知识。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">把握</span>深度学习和强化学习的<span style="color: black;">基本</span>知识,<span style="color: black;">认识</span>深度强化学习的应用和算法,如深度Q网络、策略梯度等。</p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/4fd92fe0775b49459ba65f6f6b6030af~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1727530514&x-signature=J2Gr6TRJUlKI9QoO9vE7%2BXK5hRs%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">2. 学习生成模型</span></strong></span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">生成模型是人工智能<span style="color: black;">行业</span>的前沿技术之一,<span style="color: black;">能够</span>用于图像生成和自然语言生成等。在高级<span style="color: black;">周期</span>,需要深入学习生成模型的知识,<span style="color: black;">能够</span><span style="color: black;">经过</span>阅读生成模型书籍、参加在线课程<span style="color: black;">或</span>自学来<span style="color: black;">把握</span>生成模型的知识。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">把握</span>生成模型的基本概念和算法,如变分自编码器、生成对抗网络等,以及应用于自然语言处理、计算机视觉等<span style="color: black;">行业</span>的生成模型。</p>
<h1 style="color: black; text-align: left; margin-bottom: 10px;">免费分享<span style="color: black;">有些</span>我整理的人工智能学习资料给<span style="color: black;">大众</span>,整理了很久,非常全面。<span style="color: black;">包含</span>人工智能<span style="color: black;">基本</span>入门视频+AI常用框架实战视频、<span style="color: black;">设备</span>学习、深度学习与神经网络等视频、课件源码、毕设项目、AI热门论文等。</h1>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">下面是截图,扫码进群免费领取:<a style="color: black;">扫码进群领资料</a></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-6w9my0ksvp/3ec2b9a9ef37440bae4f1435554daa80~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1727530514&x-signature=E%2FaPvlKcp4HFF%2B%2B59oGqUKPV9mY%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">我会在群里与<span style="color: black;">伴侣</span>们<span style="color: black;">定时</span>分享<strong style="color: blue;">人工智能的<span style="color: black;">发展就业<span style="color: black;">状况</span></span>与<span style="color: black;"><span style="color: black;">关联</span>资料</span></strong>。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">最后祝<span style="color: black;">大众</span>天天进步!!</p>
谷歌外贸网站优化技术。 楼主听话,多发外链好处多,快到碗里来!外链论坛 http://www.fok120.com/
页:
[1]