tw4ld6 发表于 2024-8-31 10:49:32

比最快的超级计算机快一百万亿倍!中国专家实现“量子计算优越性”里程碑

<img src="https://mmbiz.qpic.cn/mmbiz_gif/Jo4d3t8GbiavMUlB8cwKwp5lymeESDBJluYxhiauwT0jMEpd0cAt0MvX5adMBib6lRRtqArh3VhKT4icyEtrib6Tyng/640?wx_fmt=gif&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1" style="width: 50%; margin-bottom: 20px;">
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">导语</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">中国科学技术大学潘建伟、陆朝阳等<span style="color: black;">构成</span>的<span style="color: black;">科研</span>团队与中科院上海微系统所、国家并行计算机工程技术<span style="color: black;">科研</span>中心合作,<strong style="color: blue;">构建了76个光子的量子计算原型机“九章”,实现了<span style="color: black;">拥有</span>实用前景的“高斯玻色取样”任务的快速求解。</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">按照</span>现有理论,该量子计算系统处理高斯玻色取样的速度比<span style="color: black;">日前</span>最快的超级计算机快<strong style="color: blue;">一百万亿倍</strong>(“九章”一分钟完成的任务,超级计算机需要大约一亿年)。等效地,其速度比去年谷歌发布的53个超导比特量子计算原型机“悬铃木”快一百亿倍。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">这一成果使得我国成功达到了量子计算<span style="color: black;">科研</span>的<span style="color: black;">第1</span>个里程碑:<strong style="color: blue;">量子计算优越性(国外<span style="color: black;">亦</span><span style="color: black;">叫作</span>之为“量子霸权”)</strong>,<span style="color: black;">关联</span>论文于12月4日以“First Release”形式在线<span style="color: black;">发布</span>于国际学术期刊Science。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_png/vbvnzfFFCKlg3iaIyBeWmW7sJOuzJGQo2dvBnnSpuvZGhVyxrItYaTkq7gqLSE7gOjFnryljg3PGM9icJS2OWXVQ/640?wx_fmt=png&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">在气象工程师白冰被追捕的路上,他认识了<span style="color: black;">一样</span>被追捕的宋诚。白冰<span style="color: black;">奥秘</span>地拿出一只箱子, “这是一台超弦计算机,是我从气象模拟中心带出来的,你说偷出来的<span style="color: black;">亦</span>行,我全凭它摆脱追捕了”。</p>
    <span style="color: black;">这个情节来自科幻作家刘慈欣的中短篇小说《镜子》。在故事里,白冰偷出来的这台<span style="color: black;">设备</span>是</span><strong style="color: blue;"><span style="color: black;">一台<span style="color: black;">持有</span>了几乎无限运算和存贮能力的计算机</span></strong><span style="color: black;">,</span><span style="color: black;">它不仅能模拟气象这种<span style="color: black;">繁杂</span>过程,还<span style="color: black;">能够</span>模拟<span style="color: black;">全部</span>宇宙的演化。</span><span style="color: black;">只要给定<span style="color: black;">每一个</span>粒子的初始<span style="color: black;">要求</span>,<span style="color: black;">全部</span>宇宙的运行就像镜子<span style="color: black;">同样</span>清楚地展现,准确无误。</span><span style="color: black;">借由主人翁白冰的口述,作者表达过他对计算的理解:用模拟方式为一个鸡蛋<span style="color: black;">创立</span>数学模型,<span style="color: black;">便是</span>将<span style="color: black;">构成</span>鸡蛋的每一个原子的状态都输入模型的数据库,当这个模型在计算机中运行时,</span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">倘若</span>给出的边界<span style="color: black;">要求</span>合适,内存中的那个虚拟鸡蛋就会孵出小鸡来。</span></strong><span style="color: black;"><span style="color: black;">况且</span>那只内存中的虚拟小鸡,与现实中的那个鸡蛋孵出的小鸡一模<span style="color: black;">同样</span>,连每一根毛尖都不会差一丝一毫!</span><span style="color: black;"><span style="color: black;">倘若</span>这个模拟<span style="color: black;">目的</span>比鸡蛋再大些呢?大到一棵树,一个人,<span style="color: black;">非常多</span>人;大到一座城市,一个国家,<span style="color: black;">乃至</span>大到<span style="color: black;">全部</span>地球?</span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">倘若</span>模拟的对象是<span style="color: black;">全部</span>宇宙又会怎么样?</span></strong><span style="color: black;">现实的<span style="color: black;">理学</span>系统<span style="color: black;">到底</span>能<span style="color: black;">不可</span>被计算机模拟?这种猜想绝不仅限于科幻作家的小说中,<span style="color: black;">亦</span>存在于严肃的学术讨论和哲学思考里。</span><span style="color: black;"><span style="color: black;">例如</span>,计算机<span style="color: black;">行业</span>中非常著名的扩展的</span><strong style="color: blue;"><span style="color: black;">丘奇-图灵论题</span></strong><span style="color: black;">(extended Church-Turing thesis)就认为,</span><strong style="color: blue;"><span style="color: black;">任何<span style="color: black;">理学</span>系统都<span style="color: black;">能够</span>被经典图灵机有效模拟。</span></strong><span style="color: black;"><span style="color: black;">然则</span>,随着人们对微观世界的深入理解,扩展的丘奇-图灵论题<span style="color: black;">起始</span>被质疑,尤其是随着量子力学的发展,<span style="color: black;">更加多</span>人<span style="color: black;">认识</span>到,<span style="color: black;">实质</span>的量子过程太过<span style="color: black;">繁杂</span>,<span style="color: black;">倘若</span>用经典计算模拟量子过程,需要的时间可能会呈指数增长。</span><span style="color: black;"><span style="color: black;">亦</span><span style="color: black;">便是</span>说,有效计算是不可能的。</span><span style="color: black;">1980年代,费曼提出,模拟量子过程,必须放弃经典计算的老<span style="color: black;">招数</span>,用量子材料造一台新式<span style="color: black;">设备</span>,来自然地<span style="color: black;">处理</span>这些问题。</span><span style="color: black;">没错,就是</span><strong style="color: blue;"><span style="color: black;">量子计算机</span></strong><span style="color: black;">。</span><span style="color: black;">经典计算和量子计算的区别在哪里呢?</span><span style="color: black;"><span style="color: black;">针对</span>经典计算机<span style="color: black;">来讲</span>,<span style="color: black;">每一个</span>比特要么<span style="color: black;">表率</span>0,要么<span style="color: black;">表率</span>1,这些比特<span style="color: black;">便是</span>信息,而对这些信息运算,<span style="color: black;">实质</span>上<span style="color: black;">便是</span>用电路构建<span style="color: black;">有些</span><span style="color: black;">规律</span>门,完成“与”、“非”、“或”以及更<span style="color: black;">繁杂</span>的操作。</span><strong style="color: blue;"><span style="color: black;">而量子计算,则是利用量子天然具备的叠加性,施展并行计算的能力。</span></strong><span style="color: black;"><span style="color: black;">每一个</span>量子比特,不仅<span style="color: black;">能够</span><span style="color: black;">暗示</span>0或1,还<span style="color: black;">能够</span><span style="color: black;">暗示</span>成0和1分别乘以一个系数再叠加,随着系数的<span style="color: black;">区别</span>,这个叠加的形式可能性会<span style="color: black;">非常多</span><span style="color: black;">非常多</span>,它会产生什么效果呢?</span><span style="color: black;"><span style="color: black;">咱们</span>以两个比特举例,<span style="color: black;">针对</span>经典的两比特<span style="color: black;">来讲</span>,在某一时刻,它最多只能<span style="color: black;">暗示</span>00、<span style="color: black;">十、</span>01、11这四种可能性的一种;而量子计算<span style="color: black;">因为</span>叠加性,<span style="color: black;">能够</span>写成</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_png/vbvnzfFFCKlg3iaIyBeWmW7sJOuzJGQo2fhL9n1KgtOH7qpflZGKBCG7Mz8M1OKb8fibMKtsymibPzibOkxpibVxehQ/640?wx_fmt=png&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;"></p><span style="color: black;"><span style="color: black;">亦</span><span style="color: black;">便是</span>说,它<span style="color: black;">能够</span><span style="color: black;">同期</span><span style="color: black;">包含</span>有四种信息状态。这种叠加性<span style="color: black;">寓意</span>着,随着比特数<span style="color: black;">增多</span>,信息的存储量和运行速度会</span><strong style="color: blue;"><span style="color: black;">指数<span style="color: black;">增多</span></span></strong><span style="color: black;">
      <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">,经典计算机将望尘莫及。</p>
    </span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">量子计算优越性的实现</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">是一场持久战</strong></p><span style="color: black;">基于量子的叠加性,许多量子<span style="color: black;">专家</span>认为,量子计算机在特定任务上的计算能力将会远超任何一台经典计算机。</span><span style="color: black;">2012年,美国<span style="color: black;">理学</span>学家John Preskill将其描述为</span><strong style="color: blue;"><span style="color: black;">“量子计算优越性”</span></strong><span style="color: black;">或<span style="color: black;">叫作</span></span><strong style="color: blue;"><span style="color: black;">“量子霸权”</span></strong><span style="color: black;">(quantum supremacy)。<span style="color: black;">专家</span>们预计,当<span style="color: black;">能够</span>精确<span style="color: black;">操作</span>的量子比特超过<span style="color: black;">必定</span>数目时,量子计算优越性就可能实现。</span><span style="color: black;"><span style="color: black;">倘若</span>有一个特定的问题,量子计算需要</span><strong style="color: blue;"><span style="color: black;">一个小时</span></strong><span style="color: black;">,经典计算需要</span><strong style="color: blue;"><span style="color: black;">上亿年</span></strong><span style="color: black;">,量子计算优越性便得以实现,扩展的丘奇-图灵论题<span style="color: black;">亦</span>会被动摇,<span style="color: black;">由于</span>那就证明了,有些过程,经典计算是<span style="color: black;">没法</span>有效模拟的。</span><span style="color: black;">从<span style="color: black;">专家</span>对量子计算优越性的观点来看,有两个关键点,</span><strong style="color: blue;"><span style="color: black;">一是<span style="color: black;">操作</span>的量子比特的数量,二是<span style="color: black;">操作</span>的量子比特的<span style="color: black;">精细</span>度。</span></strong><span style="color: black;"><span style="color: black;">仅有</span>当两个<span style="color: black;">要求</span>都达到的时候,<span style="color: black;">才可</span>实现量子计算的优越性。</span><span style="color: black;">如下图所示,左下角的范围(紫色)<span style="color: black;">表率</span>的是<span style="color: black;">操作</span>的量子比特数目和<span style="color: black;">精细</span>度都<span style="color: black;">不足</span>的情形,<span style="color: black;">此时</span>是不可能在跟经典计算的PK中胜出的,<span style="color: black;">专家</span>们在<span style="color: black;">尽可能</span>朝着右上方(绿色)<span style="color: black;">奋斗</span>。而<span style="color: black;">位置于</span>中间的部分(蓝色),则<span style="color: black;">能够</span>用来在短期内实现<span style="color: black;">有些</span>应用上的突破。</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_png/vbvnzfFFCKlg3iaIyBeWmW7sJOuzJGQo2EMucicvGNo9bD18LR4jb7LZaNSoUHbExg7kJ7txenk1L70tJfSMWl9w/640?wx_fmt=png&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;"></p><span style="color: black;">量子计算优越性与<span style="color: black;">操作</span>量子比特的关系</span><span style="color: black;">去年10月,谷歌在量子计算方面十<span style="color: black;">数年</span>的布局<span style="color: black;">最终</span>有了里程碑式的表现——国际权威学术杂志Nature以“Quantum supremacy using a programmable superconducting processor”为题,刊发了谷歌的<span style="color: black;">研究</span>工作,谷歌据此宣布实现了量子计算优越性。</span><span style="color: black;"><span style="color: black;">按照</span>谷歌的论文,该团队<span style="color: black;">选择</span>的用来展示量子计算优越性的特定任务是一种叫做</span><strong style="color: blue;"><span style="color: black;">“随机线路采样”</span></strong><span style="color: black;"><span style="color: black;">(Random Circuit Sampling)</span>的任务。</span><span style="color: black;"><span style="color: black;">通常</span><span style="color: black;">来讲</span>,<span style="color: black;">选择</span>这种特定任务的时候,需要经过精心考量,该任务最好比较适合已有的量子体系,<span style="color: black;">同期</span><span style="color: black;">针对</span>经典计算<span style="color: black;">来讲</span>很难模拟。</span><span style="color: black;">这个“随机线路采样”任务<span style="color: black;">便是</span>如此。谷歌团队在一个<span style="color: black;">包括</span>53个可用量子比特的可编程超导量子处理器上运行“随机线路采样”,用约200秒的时间进行了100万次采样。</span><span style="color: black;"><span style="color: black;">同期</span><span style="color: black;">她们</span>还利用当时世界排名<span style="color: black;">第1</span>的超级计算机Summit进行了一个比较,<span style="color: black;">她们</span>预计,<span style="color: black;">一样</span>的任务,Summit需要算上一万年。</span><strong style="color: blue;"><span style="color: black;">“200秒”PK“一万年”</span></strong><span style="color: black;">,该团队宣<span style="color: black;">叫作</span>这<span style="color: black;">寓意</span>着量子计算优越性<span style="color: black;">作为</span>现实。</span><span style="color: black;">谷歌的这项工作<span style="color: black;">火速</span><span style="color: black;">诱发</span>了学术界的争议。<span style="color: black;">由于</span>量子计算和经典计算的竞争是一个<span style="color: black;">长时间</span>的动态过程,虽然人们<span style="color: black;">操作</span>量子比特的数量和<span style="color: black;">精细</span>度在<span style="color: black;">持续</span><span style="color: black;">加强</span>,</span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">然则</span>经典计算的算法和硬件<span style="color: black;">亦</span>在<span style="color: black;">持续</span>优化,超算工程的<span style="color: black;">潜能</span><span style="color: black;">更加是</span>不可小觑。</span></strong><span style="color: black;"><span style="color: black;">例如</span>,IBM就宣<span style="color: black;">叫作</span>,实现53比特、20深度的量子随机线路采样,经典模拟完全<span style="color: black;">能够</span>只用两天多时间,<span style="color: black;">乃至</span>还<span style="color: black;">能够</span>更好,<span style="color: black;">亦</span>许<span style="color: black;">将来</span>何时,经典模拟在这个任务上就能超过谷歌团队的量子计算机。</span><span style="color: black;"><span style="color: black;">因此</span>,客观看来,</span><strong style="color: blue;"><span style="color: black;">量子计算和经典计算的算力之争,可能是一个<span style="color: black;">长时间</span>battle的过程,</span></strong><span style="color: black;"><span style="color: black;">将来</span>一段时间,<span style="color: black;">咱们</span>可能会见证两者卯足了劲儿“秀肌肉”的精彩打擂。</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">深孚众望的玻色采样任务</strong></p><span style="color: black;">在用来展示量子计算优越性的特定任务中,还有一种任务被<span style="color: black;">专家</span>寄予厚望——</span><strong style="color: blue;"><span style="color: black;">玻色采样</span></strong><span style="color: black;">(Boson Sampling)。</span><span style="color: black;">玻色采样是一种采样任务,2010年由当时在MIT的Scott Aaronson和 Alex Arkhipov首次提出。为了说明这是一个<span style="color: black;">怎么样</span>的问题,<span style="color: black;">咱们</span>先来回顾儿时的一个游戏——高尔顿板。</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_png/vbvnzfFFCKlg3iaIyBeWmW7sJOuzJGQo25ssVNNy1xicbCib5ncoiaxcHOCcG3rJCyKrYVnFkxUU0QiaRIxmPVC61UA/640?wx_fmt=png&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;"></p><span style="color: black;">高尔顿板示意图</span><span style="color: black;">高尔顿板问题<span style="color: black;">是由于</span>英国生物统计学家高尔顿提出来的,小球从上端的口落下,每经过一个钉板,都有一半的可能从左边走,一半的可能从右边走,最后,当<span style="color: black;">非常多</span>小球扔下去后,</span><strong style="color: blue;"><span style="color: black;">下面格子里的小球分布会呈现<span style="color: black;">必定</span>的统计规律</span></strong><strong style="color: blue;"><span style="color: black;">。</span></strong><span style="color: black;">这个模型<span style="color: black;">亦</span>被直观的用来展示中心极限定理。</span><span style="color: black;">而<span style="color: black;">咱们</span>所说的玻色取样问题<span style="color: black;">便是</span>一种量子版的“高尔顿板”问题。小球变<span style="color: black;">成为了</span>光子,钉板变<span style="color: black;">成为了</span>分束器,若干个光子进入网格之后,经过分束器<span style="color: black;">构成</span>的干涉仪,<span style="color: black;">最后</span>分别在<span style="color: black;">那些</span>出口被探测到,记录下来,<span style="color: black;">便是</span>一个采样。</span><span style="color: black;"><span style="color: black;">累积</span>之后,光子数<span style="color: black;">亦</span>会有一个分布。</span><strong style="color: blue;"><span style="color: black;">每一种采样结果都对应一个概率。<span style="color: black;">所有</span>可能的采样结果就<span style="color: black;">形成</span>输出态的态空间。</span></strong>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_png/vbvnzfFFCKlg3iaIyBeWmW7sJOuzJGQo2QXTfn5RPicQPiabWlpaCejMfZa8QHtxgH7syBWOzOAuEpNVOic14AJXSg/640?wx_fmt=png&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;"></p><span style="color: black;">玻色取样问题</span><span style="color: black;"><span style="color: black;">然则</span>,玻色采样问题比高尔顿板问题<span style="color: black;">繁杂</span>得多。<span style="color: black;">为何</span>呢?</span><span style="color: black;"><span style="color: black;">由于</span>这个网格的<span style="color: black;">每一个</span>节点都是一个小分束器,<span style="color: black;">倘若</span>相遇在这个节点上的光子是全同的,<span style="color: black;">那样</span>几个光子接下来怎么走,</span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">不仅</span>是一个“随机”的概率问题,<span style="color: black;">况且</span>还是个“<span style="color: black;">繁杂</span>”的概率问题</span></strong><span style="color: black;">——这个概率与分束器的参数<span style="color: black;">相关</span>,<span style="color: black;">亦</span>与光子本身的相位<span style="color: black;">相关</span>。</span><span style="color: black;"><span style="color: black;">倘若</span><span style="color: black;">咱们</span>用矩阵来<span style="color: black;">暗示</span>这个过程的话,<span style="color: black;">能够</span>理解为:这个大网格<span style="color: black;">便是</span>一种变换关系,把入口的光子分布变换成出口的光子分布,这个变换关系必须要写成一个复数矩阵。</span><span style="color: black;">2010年,Scott Aaronson 和 Alex Arkhipov从理论上证明,n光子玻色取样的分布概率正比于n维矩阵积和式(Permanent)的模方,这对经典算法<span style="color: black;">来讲</span>是#P-complete困难的问题,</span><strong style="color: blue;"><span style="color: black;">随着光子数的<span style="color: black;">增多</span>,求解步数呈指数增长。</span></strong><span style="color: black;"><span style="color: black;">针对</span><span style="color: black;">这般</span>的问题,量子计算机在中小规模下就有可能打败超级计算机。自此,“玻色采样”问题被用来挑战量子计算优越性。</span><span style="color: black;">自玻色采样提出,世界上<span style="color: black;">持续</span>有<span style="color: black;">非常多</span>个小组从实验上挑战和验证玻色采样。2013年,国际上四个<span style="color: black;">科研</span>小组<span style="color: black;">同期</span>实现3光子的原理验证性玻色采样。</span><span style="color: black;">从原理上说,这个实验大致的过程是:单光子源<span style="color: black;">持续</span>地发出单光子,经过一个多模式干涉仪,最后在各个出口用探测器探测。</span><span style="color: black;"><span style="color: black;">然则</span>,<span style="color: black;">因为</span>技术的限制,真正的单光子源很难做出,这些小组都采用了赝单光子源(赝单光子源时不时会冒出来多光子的<span style="color: black;">成份</span>),干涉网络的性能又不怎么好,</span><strong style="color: blue;"><span style="color: black;">这些<span style="color: black;">原因</span>制约着玻色取样的高效率大规模实现。</span></strong><span style="color: black;">当然,有<span style="color: black;">有些</span>小组<span style="color: black;">亦</span>提出或实现过<span style="color: black;">有些</span>好的<span style="color: black;">方法</span>来<span style="color: black;">处理</span>赝单光子源所带来的不可拓展性。<span style="color: black;">例如</span>,2014年A. P. Lund等人提出散粒玻色采样(scattershot boson sampling)实验<span style="color: black;">方法</span>。</span><span style="color: black;"><span style="color: black;">然则</span><span style="color: black;">因为</span>采用的是自发参量下转换(SPDC)光源,这种概率性的光源产生单光子的效率非常低,<span style="color: black;">因此</span>实验上<span style="color: black;">始终</span><span style="color: black;">无</span>真正实现3个以上光子的玻色采样。更重要的是,这些实验相比经典计算机并未展示出任何量子优越性。</span><span style="color: black;">看来,这事<span style="color: black;">想要</span>弄成,必须得在单光子源和干涉仪上下功夫,单光子源的单光子性、全同性和提取效率要好,干涉仪效率要高,波包重叠性<span style="color: black;">亦</span>要好。于是,人们想到了</span><strong style="color: blue;"><span style="color: black;">量子点光源</span></strong><span style="color: black;">,<span style="color: black;">期盼</span>用量子点光源来产生真正的单光子。</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_png/vbvnzfFFCKlg3iaIyBeWmW7sJOuzJGQo2LktWRoAcm7nT7YgiahgKN9ZLIPYibLnq1ziagLrWyA2Dzdtcic3Gh0lxIw/640?wx_fmt=png&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;"></p><span style="color: black;">超越<span style="color: black;">初期</span>经典计算机的光量子原型机</span><span style="color: black;">2017年,中国科大潘建伟、陆朝阳团队<span style="color: black;">一样</span>把目光聚焦到了量子点光源。值得一提的是,<span style="color: black;">她们</span>用的是一种共振激发的量子点光源,能产生确定性的高品质单光子,<span style="color: black;">另外</span>,<span style="color: black;">她们</span>自主设计<span style="color: black;">开发</span>了<span style="color: black;">有效</span>率的线性光学网络。</span><span style="color: black;">在这种装备武装下,实验上</span><strong style="color: blue;"><span style="color: black;">首次实现5光子玻色采样</span></strong><span style="color: black;">。采样率是之前所有实验的<span style="color: black;">最少</span></span><strong style="color: blue;"><span style="color: black;">24000倍</span></strong><span style="color: black;">,相比于<span style="color: black;">初期</span>的经典计算机ENIAC和TRADIC,计算能力<span style="color: black;">拥有</span></span><strong style="color: blue;"><span style="color: black;">10-100倍</span></strong><span style="color: black;">的<span style="color: black;">提高</span>。下图展示了这次实验和此前其他玻色采样实验计算能力的比较。</span><span style="color: black;"><span style="color: black;">能够</span>看出,这次的结果不仅远好于国际同行,<span style="color: black;">更加是</span><span style="color: black;">第1</span>次超越了<span style="color: black;">初期</span>的经典计算机。这是人类历史上首次量子计算机和经典计算机的同台竞赛,</span><span style="color: black;"><strong style="color: blue;">标志着量子计算机的<span style="color: black;">科研</span><span style="color: black;">再也不</span>是发<span style="color: black;">文案</span>,而是<span style="color: black;">能够</span>制造真正的仪器执行<span style="color: black;">详细</span>的算法,在量子计算的发展中<span style="color: black;">拥有</span>重要<span style="color: black;">道理</span>。</strong></span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_png/vbvnzfFFCKlg3iaIyBeWmW7sJOuzJGQo2JItu5l94ticpVJO0PuQw5pR0iaV2QKlDGPiaNmoWvGSFb5BXluc3nEgEg/640?wx_fmt=png&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;"></p><span style="color: black;">2017年以及此前所有玻色采样的计算能力比较</span><span style="color: black;">2019年,该团队又将这种<span style="color: black;">方法</span>向前推进一步——<span style="color: black;">她们</span>将20个光子输入60个入口、60个出口模式的干涉线路,实验中,出口最多探测到了14个光子。</span><span style="color: black;">这个工作<span style="color: black;">同期</span>在</span><strong style="color: blue;"><span style="color: black;">光子数、模式数、计算<span style="color: black;">繁杂</span>度和态空间</span></strong><span style="color: black;">四个关键指标上都大幅超越之前的国际记录。</span><span style="color: black;"><img src="https://mmbiz.qpic.cn/mmbiz_png/vbvnzfFFCKlg3iaIyBeWmW7sJOuzJGQo2ZgDWjhfIFKfBBhVLE6KicHrIWQIribMYeC23ic2Tl5jiauuicxpVDY4wfibg/640?wx_fmt=png&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;"></span><span style="color: black;">20光子输入、60模式输出的玻色采样</span><span style="color: black;"><span style="color: black;">然则</span>,</span><span style="color: black;"><strong style="color: blue;">实验中的低效率始终是量子计算可扩展的拦路虎。</strong></span><span style="color: black;">尽管<span style="color: black;">研究</span>人员<span style="color: black;">已然</span>将单光子的效率<span style="color: black;">尽可能</span>做了<span style="color: black;">提高</span>,<span style="color: black;">然则</span>每次采样任务,需要的是对所有出口光子的符合<span style="color: black;">测绘</span>,<span style="color: black;">咱们</span><span style="color: black;">能够</span>想象一下,符合后的计数率会随着光子数的<span style="color: black;">增多</span>指数下降,再想扩展这个实验的规模,遇到了瓶颈。</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">玻色采样峰回路转</strong></p><span style="color: black;"><span style="color: black;">那样</span>短期内,<span style="color: black;">咱们</span>证明量子计算优越性还有<span style="color: black;">期盼</span>吗?答案是肯定的。2017年,由Hamilton等人提出的</span><strong style="color: blue;"><span style="color: black;">高斯玻色采样</span></strong><span style="color: black;">(Gaussian Boson Sampling)<span style="color: black;">方法</span><span style="color: black;">供给</span>了很好的<span style="color: black;">处理</span>办法。</span><span style="color: black;">高斯玻色采样充分利用PDC源的高斯性质,并利用<span style="color: black;">能够</span>确定性制备的单模压缩态(SMSS)<span style="color: black;">做为</span>输入的非经典光源。</span><span style="color: black;">2018年,Quesada等人将这种<span style="color: black;">方法</span>进行了简化,<span style="color: black;">她们</span>证明,只需要采取阈值探测的<span style="color: black;">办法</span>,即探测到一个及以上光子都记作1,<span style="color: black;">此时</span>的输出分布与一个被<span style="color: black;">叫作</span>为Torontonian的矩阵函数<span style="color: black;">相关</span>。</span><span style="color: black;">Torontonian是Hafnians的无限和,</span><strong style="color: blue;"><span style="color: black;"><span style="color: black;"><span style="color: black;">针对</span>经典算法<span style="color: black;">来讲</span>,计算它<span style="color: black;">一样</span>是一个</span><span style="color: black;">#P困难</span><span style="color: black;">的问题。</span></span></strong><span style="color: black;">关于压缩态光,你可能并不陌生。在引力波的探测中,就用到了压缩态光。压缩态光是一种量子光源,它超越散粒噪声极限的噪声压制本领,令其在引力波探测中起到了关键<span style="color: black;">功效</span>。</span><span style="color: black;">在玻色采样中,采用单模压缩态光源,是为了<span style="color: black;">明显</span>提<span style="color: black;">有效</span>率。区别于单光子光源“一个一个”走出来的状态,</span><strong style="color: blue;"><span style="color: black;">单模压缩态光源</span></strong><span style="color: black;"><span style="color: black;">能够</span>看做是“一团一团”走出来。</span><span style="color: black;">每激发一次,<span style="color: black;">能够</span>产生<span style="color: black;">非常多</span>对相干的光子,<span style="color: black;">一块</span>进入干涉网络。</span><strong style="color: blue;"><span style="color: black;">足够高的效率,为量子比特的扩展<span style="color: black;">供给</span>了可能。</span></strong><span style="color: black;">近期,中国科大潘建伟、陆朝阳团队就采用压缩态光源,实现了这种尝试。</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_png/vbvnzfFFCKlg3iaIyBeWmW7sJOuzJGQo2ic6y9zkhKiaPywlya3Eb8KGp47adKef7OUlLmHpTagPe2BNmerFZApxA/640?wx_fmt=png&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;"></p><span style="color: black;">高斯玻色取样量子计算原型机“九章号”</span><span style="color: black;"><span style="color: black;">她们</span>利用50个单模压缩态,输入一个100个入口、100个出口的线性光学网络,最后在网格出口处<span style="color: black;">安顿</span>了单光子探测器来采样。得益于团队此前在玻色采样方面的<span style="color: black;">累积</span>,<span style="color: black;">她们</span>的技术在各个指标上都<span style="color: black;">拥有</span><span style="color: black;">明显</span>的<span style="color: black;">优良</span>。</span><span style="color: black;">光源方面,<span style="color: black;">她们</span><span style="color: black;">持有</span>国际上</span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">独一</span><span style="color: black;">同期</span>具备<span style="color: black;">有效</span>率、高全同性、极高亮度和大规模扩展能力的量子光源,</span></strong><span style="color: black;"><span style="color: black;">况且</span>该团队还<span style="color: black;">拥有</span>最大规模(100×100)的干涉技术,还能<span style="color: black;">同期</span>做到全连通、随机矩阵、相位稳定、波包重合好(&gt;99.5%)、<span style="color: black;">经过</span>率高(&gt;98%)。</span><span style="color: black;"><span style="color: black;">另外</span>,中科院上海微系统所研制的高性能超导单光子探测器<span style="color: black;">亦</span><span style="color: black;">装扮</span>了重要角色。</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_png/vbvnzfFFCKlg3iaIyBeWmW7sJOuzJGQo24Vta2FEr1I8UXK68arU998gVZDCuWXDxwUmhkntvOzjK1aqibLjLibicA/640?wx_fmt=png&amp;tp=webp&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;"></p><span style="color: black;">“九章号”部分实景</span><span style="color: black;"><span style="color: black;">区别</span>于标准玻色采样,高斯玻色采样需要</span><strong style="color: blue;"><span style="color: black;">高精度的锁相技术</span></strong><span style="color: black;">。<span style="color: black;">为何</span>这点至关重要呢?</span><span style="color: black;"><span style="color: black;">咱们</span><span style="color: black;">能够</span>回忆一下经典<span style="color: black;">理学</span>里干涉需要<span style="color: black;">那些</span><span style="color: black;">要求</span>。<span style="color: black;">例如</span><span style="color: black;">咱们</span>比较<span style="color: black;">熟练</span>的光波、水波,想要产生稳定的干涉条纹,有一个重要<span style="color: black;">要求</span><span style="color: black;">便是</span>两束波的相位差恒定。</span><span style="color: black;">量子的干涉<span style="color: black;">亦</span>类似,<span style="color: black;">倘若</span>每一路的光相位总是抖动,彼此之间相位差就会不稳定,就观测不到稳定的采样结果。</span><span style="color: black;">在这次实验中,每路单模压缩光进入干涉网络之前,要各自经过2米自由空间和20米光纤,<span style="color: black;">所说</span>保持相位锁定,<span style="color: black;">亦</span><span style="color: black;">便是</span><span style="color: black;">保准</span>这个路径的光程恒定。</span><span style="color: black;"><span style="color: black;">专家</span>们</span><strong style="color: blue;"><span style="color: black;">采取“缺啥补啥”的策略</span></strong><span style="color: black;">,让同源的若干路激光分别去走压缩态光所走的路程,并与一个标准参考激光进行比较(<span style="color: black;">经过</span>干涉的<span style="color: black;">办法</span>),实时监测每一路与标准参考光的相位差,并进行相应的<span style="color: black;">调节</span>。</span><span style="color: black;">在<span style="color: black;">精细</span>微妙的操控下,2米自由空间+20米光纤光程抖动保持在25纳米之内,这相当于100<span style="color: black;">千米</span>的距离误差<span style="color: black;">少于</span>一根头发丝。</span><span style="color: black;">在<span style="color: black;">最后</span>的采样结果里,</span><strong style="color: blue;"><span style="color: black;">该团队成功构建了76个光子100个模式的高斯玻色采样量子计算原型机。</span></strong><span style="color: black;"><span style="color: black;">专家</span>给它起名叫</span><strong style="color: blue;"><span style="color: black;">“九章”</span></strong><span style="color: black;">。</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"></p><span style="color: black;"><span style="color: black;">最后</span>探测到的光子数分布</span>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">“九章”VS“富岳”,</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">“九章”VS“悬铃木”</strong></p><span style="color: black;">之<span style="color: black;">因此</span>将这台新量子计算机命名为“九章”,是为了纪念中国古代最早的数学专著</span><strong style="color: blue;"><span style="color: black;">《九章算术》</span></strong><span style="color: black;">。</span><span style="color: black;">《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著,它的<span style="color: black;">显现</span>标志中国古代数学形<span style="color: black;">成为了</span>完整的体系,是一部<span style="color: black;">拥有</span>里程碑<span style="color: black;">道理</span>的历史著作。而这台叫做“九章”的玻色采样新<span style="color: black;">设备</span>,<span style="color: black;">一样</span><span style="color: black;">拥有</span>重要的里程碑<span style="color: black;">道理</span>。</span><span style="color: black;"><span style="color: black;">按照</span><span style="color: black;">日前</span>最优的经典算法,“九章”花</span><strong style="color: blue;"><span style="color: black;">200秒</span></strong><span style="color: black;">采集到的</span><strong style="color: blue;"><span style="color: black;">5000个样本</span></strong><span style="color: black;">,<span style="color: black;">倘若</span>用我国的“太湖之光”,需要运行25亿年,<span style="color: black;">倘若</span>用<span style="color: black;">日前</span>世界排名<span style="color: black;">第1</span>的超级计算机“富岳”,<span style="color: black;">亦</span>需要6亿年。</span><span style="color: black;"><span style="color: black;">这般</span>的<span style="color: black;">优良</span><span style="color: black;">非常</span><span style="color: black;">显著</span>。<span style="color: black;">咱们</span><span style="color: black;">能够</span>等效地对比去年谷歌发布的53比特量子计算原型机“悬铃木”:<span style="color: black;">针对</span>“悬铃木”<span style="color: black;">来讲</span>,200秒完成的任务,超算Summit需要2天,<span style="color: black;">思虑</span>Summit和富岳的算力差距,</span><strong style="color: blue;"><span style="color: black;">“九章”等效地比“悬铃木”快100亿倍。</span></strong>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"></p><span style="color: black;">“九章”相<span style="color: black;">针对</span>太湖之光的<span style="color: black;">优良</span>比较</span><span style="color: black;"><span style="color: black;">做为</span>对比,<span style="color: black;">咱们</span><span style="color: black;">能够</span>回顾一下“悬铃木”其他方面的<span style="color: black;">状况</span>。谷歌53比特随机线路取样实验中,量子优越性是依赖于样本数量的。</span><span style="color: black;">虽然采集100万个样本时,“悬铃木”需要200秒,超算Summit需要2天,量子计算相比于超级计算机有优越性;</span><span style="color: black;">但<span style="color: black;">倘若</span>采集100亿个样本的话,经典计算机仍然只需要2天,可是“悬铃木”却需要20天<span style="color: black;">才可</span>完成这么大的样本采样,量子计算反而丧失了优越性。</span><strong style="color: blue;"><span style="color: black;">而<span style="color: black;">针对</span>高斯玻色采样问题,量子计算优越性不依赖于样本数量。</span></strong><span style="color: black;"><span style="color: black;">另外</span>,在态空间方面</span><span style="color: black;"><span style="color: black;">,</span><span style="color: black;">“九章”<span style="color: black;">亦</span>以输出量子态空间规</span></span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">模达到</span><span style="color: black;">1030</span><span style="color: black;">的<span style="color: black;">优良</span></span></span></strong><span style="color: black;"><span style="color: black;">远远优于“悬铃木”,“悬铃木”输出量子态空间规模是<span style="color: black;">1016</span>,而<span style="color: black;">日前</span>全世界的存储容量是<span style="color: black;">1022</span></span>。</span><span style="color: black;"><span style="color: black;">况且</span>,“九章”运行的温度<span style="color: black;">亦</span>远<span style="color: black;">无</span>“悬铃木”那样苛刻,除探测部分需要4K的低温以外,其他部分都是在常温下运行的。</span><strong style="color: blue;"><span style="color: black;">“九章”的出色表现,<span style="color: black;">牢靠</span>确立了我国在国际量子计算<span style="color: black;">科研</span>中的<span style="color: black;">第1</span>方阵地位,</span></strong><span style="color: black;">为<span style="color: black;">将来</span>实现可<span style="color: black;">处理</span><span style="color: black;">拥有</span>重大实用价值问题的规模化量子模拟机奠定了技术<span style="color: black;">基本</span>。</span><span style="color: black;">量子计算机的研制已<span style="color: black;">作为</span>世界科技前沿的最大挑战之一,<span style="color: black;">做为</span>欧美各发达国家角逐的焦点,<span style="color: black;">能够</span>预见不会止步于此。</span><span style="color: black;"><span style="color: black;">针对</span>量子计算机的<span style="color: black;">科研</span>,本<span style="color: black;">行业</span>的国际同行公认有三个指标性的发展<span style="color: black;">周期</span>,其中<span style="color: black;">第1</span>个<span style="color: black;">周期</span>是发展具备50-100个量子比特的高精度专用量子计算机,<span style="color: black;">针对</span><span style="color: black;">有些</span>超级计算机<span style="color: black;">没法</span><span style="color: black;">处理</span>的高<span style="color: black;">繁杂</span>度特定问题实现<span style="color: black;">有效</span>求解,实现计算科学中“量子计算优越性”的里程碑。</span><strong style="color: blue;"><span style="color: black;">此次“九章”的研制成功,<span style="color: black;">便是</span>这重要的<span style="color: black;">第1</span>个<span style="color: black;">周期</span>胜利。</span></strong><span style="color: black;">在这之后,<span style="color: black;">专家</span>还会致力于研制可相干<span style="color: black;">操作</span>数百个量子比特的量子模拟机,用于<span style="color: black;">处理</span>若干超级计算机<span style="color: black;">没法</span>胜任的<span style="color: black;">拥有</span>重大实用价值的问题(如量子化学、新材料设计、优化算法等);</span><span style="color: black;">最后,大幅度<span style="color: black;">加强</span>可<span style="color: black;">操作</span>的量子比特的数目(百万量级)和精度(容错阈值&gt;99.9%),研制可编程的通用量子计算原型机。</span><span style="color: black;">在<span style="color: black;">能够</span>预见的<span style="color: black;">将来</span>,<span style="color: black;">持续</span>优化的经典计算和不断进取的量子计算,还将在算力之争上<span style="color: black;">连续</span>battle。</span><span style="color: black;">值得一提的是,“九章”的研制成功,不仅是实现了“量子计算优越性”的里程碑,</span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">亦</span>为第二步——<span style="color: black;">处理</span>若干超级计算机<span style="color: black;">没法</span>胜任的<span style="color: black;">拥有</span>重大实用价值的问题<span style="color: black;">供给</span>了潜在的前景。</span></strong><span style="color: black;"><span style="color: black;">由于</span>,“九章号”量子计算原型机所完成的高斯玻色取样算法在图论、<span style="color: black;">设备</span>学习、量子化学等<span style="color: black;">行业</span><span style="color: black;">拥有</span>潜在应用。</span><span style="color: black;"><span style="color: black;">专家</span>设想,这些<span style="color: black;">针对</span>经典算法模拟起来<span style="color: black;">反常</span>困难的问题,<span style="color: black;">倘若</span><span style="color: black;">研发</span>一个GBS量子计算机,以此<span style="color: black;">做为</span>一个特殊用途的光子平台,让分子振动、<span style="color: black;">设备</span>学习这些<span style="color: black;">繁杂</span>过程以玻色采样的方式高速运行一下,就<span style="color: black;">能够</span>很好地来<span style="color: black;">科研</span>这些现实世界中很重要的应用。</span><span style="color: black;">除了秀肌肉以外,</span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">处理</span>现实问题,其实<span style="color: black;">亦</span>是<span style="color: black;">专家</span>们<span style="color: black;">开发</span>量子计算机的初衷。</span></strong><span style="color: black;">最后,让<span style="color: black;">咱们</span>见识一下<span style="color: black;">咱们</span>的“九章号”的真容,<span style="color: black;">瞧瞧</span>量子力学<span style="color: black;">安排</span>下的光学魅影。</span><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"><span style="color: black;">国际著名量子光学专家、罗马大学教授Fabio Sciarrino在玻色采样<span style="color: black;">行业</span>深耕<span style="color: black;">数年</span>,他对“九章”的表现和中国团队的工作给出了一个全面<span style="color: black;">精细</span>的<span style="color: black;">评估</span>。</span>
    <div style="color: black; text-align: left; margin-bottom: 10px;">
      <div style="color: black; text-align: left; margin-bottom: 10px;">
            <div style="color: black; text-align: left; margin-bottom: 10px;">以下视频<span style="color: black;">源自</span>于</div>
            <div style="color: black; text-align: left; margin-bottom: 10px;">
                <div style="color: black; text-align: left; margin-bottom: 10px;">墨子沙龙</div>
            </div>
      </div>
    </div><span style="color: black;">
      <div style="color: black; text-align: left; margin-bottom: 10px;">
            <div style="color: black; text-align: left; margin-bottom: 10px;">
                <div style="color: black; text-align: left; margin-bottom: 10px;">
                  <div style="color: black; text-align: left; margin-bottom: 10px;">
                        <div style="color: black; text-align: left; margin-bottom: 10px;">
                            <div style="color: black; text-align: left; margin-bottom: 10px;">关闭</div>
                            <div style="color: black; text-align: left; margin-bottom: 10px;"><strong style="color: blue;">观看<span style="color: black;">更加多</span></strong></div>
                            <div style="color: black; text-align: left; margin-bottom: 10px;"><span style="color: black;">更加多</span></div>
                        </div>
                  </div>
                </div>
            </div>
            <div style="color: black; text-align: left; margin-bottom: 10px;">
                <div style="color: black; text-align: left; margin-bottom: 10px;">
                  <div style="color: black; text-align: left; margin-bottom: 10px;">
                        <div style="color: black; text-align: left; margin-bottom: 10px;">
                            <div style="color: black; text-align: left; margin-bottom: 10px;">退出全屏</div>
                        </div>
                  </div>
                </div>
            </div>
            <div style="color: black; text-align: left; margin-bottom: 10px;">
                <div style="color: black; text-align: left; margin-bottom: 10px;">
                  <div style="color: black; text-align: left; margin-bottom: 10px;">
                        <div style="color: black; text-align: left; margin-bottom: 10px;">
                            <div style="color: black; text-align: left; margin-bottom: 10px;">
                              <div style="color: black; text-align: left; margin-bottom: 10px;">
                                    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">视频加载失败,请刷新页面再试</p><a style="color: black;"><img src="" style="width: 50%; margin-bottom: 20px;"> 刷新 </a>
                              </div><img src="" style="width: 50%; margin-bottom: 20px;">
                            </div>
                        </div>
                  </div>
                </div>
            </div>
      </div>
      <div style="color: black; text-align: left; margin-bottom: 10px;">
            <div style="color: black; text-align: left; margin-bottom: 10px;"> <a style="color: black;">视</a>频详情 </div>
      </div>
    </span><span style="color: black;"><span style="color: black;">作者 |&nbsp;林梅;</span><span style="color: black;"><span style="color: black;">源自</span>&nbsp;</span><span style="color: black;">|</span><span style="color: black;">&nbsp;墨子沙龙</span></span><span style="color: black;">版面 |&nbsp;顾天红</span><strong style="color: blue;"><span style="color: black;"><span style="color: black;">举荐</span>阅读</span></strong>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><a style="color: black;"><span style="color: black;"><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"></span></a></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><a style="color: black;"><span style="color: black;"><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"></span></a></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><a style="color: black;"><span style="color: black;"><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"></span></a></p><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;">
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">互动<span style="color: black;">专题</span>:感谢你的在看、转发、评论,<strong style="color: blue;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">今天的<span style="color: black;">文案</span>你看懂了多少?</span></strong></span></strong></span></strong></span></strong></span></strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">每周评论区,被zan最多的评论者,将<span style="color: black;">得到</span>造就送出的书籍一本。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">欢迎扫描下方二维码,勾搭<span style="color: black;">博主</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">或直接添加造就小助手(zaojiu16)<span style="color: black;">微X</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">发送暗号“课程”混<span style="color: black;">各样</span>有趣有料的课程社群</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="data:image/svg+xml,%3C%3Fxml version=1.0 encoding=UTF-8%3F%3E%3Csvg width=1px height=1px viewBox=0 0 1 1 version=1.1 xmlns=http://www.w3.org/2000/svg xmlns:xlink=http://www.w3.org/1999/xlink%3E%3Ctitle%3E%3C/title%3E%3Cg stroke=none stroke-width=1 fill=none fill-rule=evenodd fill-opacity=0%3E%3Cg transform=translate(-249.000000, -126.000000) fill=%23FFFFFF%3E%3Crect x=249 y=126 width=1 height=1%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;">点击阅读原文</strong></span><span style="color: black;"><strong style="color: blue;">,<strong style="color: blue;">看「造就」<span style="color: black;">更加多</span>演讲</strong></strong></span></p>




1fy07h 发表于 2024-10-5 11:43:22

seo常来的论坛,希望我的网站快点收录。

4zhvml8 发表于 2024-10-7 19:17:17

外链发布论坛学习网络优化SEO。

4zhvml8 发表于 2024-11-5 01:34:17

我完全赞同你的观点,思考很有深度。

4lqedz 发表于 6 小时前

你的见解真是独到,让我受益匪浅。
页: [1]
查看完整版本: 比最快的超级计算机快一百万亿倍!中国专家实现“量子计算优越性”里程碑