采用以太网AVB技术的时间敏锐型车载网络
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">本文将深入探讨汽车应用环境下以太网AVB/TSN的基本原理</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Microchip Technology Inc.</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">AIS<span style="color: black;">制品</span>营销经理</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Francis Ielsch</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">跨桥接网络实现面向数据分组的通信已<span style="color: black;">作为</span>一项<span style="color: black;">全世界</span>标准。</span></strong><span style="color: black;">如今,它广泛应用于<span style="color: black;">各样</span><span style="color: black;">区别</span>规模和<span style="color: black;">繁杂</span>性各异的系统中,例如服务器和飞机、小型遥控设备、远程传感器以及许多物联网(IoT)应用。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">因为</span>以太网与<span style="color: black;">理学</span>层分离,<span style="color: black;">因此</span>可<span style="color: black;">经过</span><span style="color: black;">区别</span>的<span style="color: black;">理学</span>介质对以太网帧或IP数据包进行透明传输。<span style="color: black;">因此呢</span>,<span style="color: black;">经过</span><span style="color: black;">区别</span>网络类型进行连接的设备彼此之间<span style="color: black;">能够</span>无缝通信。例如,<span style="color: black;">运用</span>蜂窝连接的手机和<span style="color: black;">运用</span>INICnet™(ISO21806)网络的车载<span style="color: black;">掌控</span>单元(<span style="color: black;">经过</span>汽车远程信息处理单元或网关)进行通信。IP数据包可从发送方路由到接收方。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">如此看来暂且还好,<span style="color: black;">然则</span>在传输时间、延迟时间、抖动和丢包方面,<span style="color: black;">状况</span><span style="color: black;">怎样</span>呢?遗憾的是,原始以太网存在不确定性,<span style="color: black;">亦</span><span style="color: black;">便是</span>说,它<span style="color: black;">没法</span><span style="color: black;">掌控</span><span style="color: black;">准许</span>设备发送数据的时间和数据量,<span style="color: black;">亦</span><span style="color: black;">没法</span><span style="color: black;">掌控</span>数据包的传输路径。两个设备之间的传输时间总是变化,并且在网络拥塞时可能会<span style="color: black;">出现</span>丢包<span style="color: black;">状况</span>。<span style="color: black;">针对</span>必须<span style="color: black;">保证</span>低延迟和信息传递的关键型应用,<span style="color: black;">这般</span>的特性是不匹配的。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">专有的总线和网络技术<span style="color: black;">拥有</span>低延迟和确定性,但只能<span style="color: black;">作为</span>一种有限的<span style="color: black;">处理</span><span style="color: black;">方法</span>。所有市场都趋向于不依赖任何特定制造商的标准化开放技术。<span style="color: black;">另外</span>,标准技术既不需要特殊的专业知识,<span style="color: black;">亦</span>无需<span style="color: black;">繁杂</span>且昂贵的网关。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">因此呢</span>,业界社区<span style="color: black;">数年</span>来<span style="color: black;">始终</span>在<span style="color: black;">科研</span>以太网的弱点。随着时间的推移,市场上<span style="color: black;">显现</span>了<span style="color: black;">各样</span>用来改善以太网实时特性的<span style="color: black;">处理</span><span style="color: black;">方法</span>,其中<span style="color: black;">包含</span>AVB/TSN。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">IEEE工作组于2008年<span style="color: black;">起始</span>制定音视频桥接(AVB)技术。当时的<span style="color: black;">目的</span>是为了改善<span style="color: black;">经过</span>以太网进行时间关键型音频和视频数据传输的特性。术语AVB不仅<span style="color: black;">包括</span>IEEE 802.1BA标准,还<span style="color: black;">包括</span>以下标准:</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">•IEEE 802.1AS:时间同步</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">•IEEE 802.1Qav:调节交换机中帧的传输和中间缓冲</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">•IEEE 802.1Qat:音频流和视频流的动态带宽分配</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">•IEEE 1722:传输协议</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">•IEEE 1722.1:支持AVB的网络和设备的动态配置</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">该标准于2011年完成定稿并发布,最初用于<span style="color: black;">各样</span>多<span style="color: black;">媒介</span>应用,后来用于工业<span style="color: black;">行业</span>,专门用来传输时间关键型命令或传感器数据。随着AVB技术在非多<span style="color: black;">媒介</span><span style="color: black;">行业</span>的应用<span style="color: black;">逐步</span><span style="color: black;">导致</span><span style="color: black;">更加多</span>关注,</span><strong style="color: blue;"><span style="color: black;">IEEE成立了一个名为“时间<span style="color: black;">敏锐</span>网络”(TSN)的新工作组</span></strong><span style="color: black;">。TSN工作组采用了AVB工作组的标准,并在专业音频视频、工业、汽车和航空航天等<span style="color: black;">行业</span><span style="color: black;">处理</span>了更广泛的应用问题。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">在汽车<span style="color: black;">行业</span>,<span style="color: black;">迄今</span>仍在沿用最初的AVB标准,但在某些<span style="color: black;">状况</span>下已<span style="color: black;">起始</span><span style="color: black;">运用</span>TSN工作组的修订版。本文<span style="color: black;">重点</span>讨论AVB标准,此标准可视为等同于TSN标准。</span></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/b4cf6a25df624b8497b0d3637673c8b0~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1725635590&x-signature=MZXkjNf0sSa9RgWPEVDnUEj64FM%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">图1:AVB系统<span style="color: black;">一般</span>可实现这些要素的<span style="color: black;">区别</span>子集</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;"><span style="color: black;">运用</span>gPTP进行时间同步</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">通用<span style="color: black;">精细</span>时间协议(gPTP-IEEE 802.1AS)是所有支持AVB的系统的<span style="color: black;">一起</span><span style="color: black;">基本</span>。其用途类似于计算机<span style="color: black;">行业</span>中广为人知的网络时间协议(NTP)。NTP<span style="color: black;">保证</span>计算机时钟在本地网络中与参考时间同步,在最佳应用<span style="color: black;">要求</span>下<span style="color: black;">达到</span>到毫秒级精度。该精度<span style="color: black;">能够</span>完全满足计算机和服务器的<span style="color: black;">需要</span>,但<span style="color: black;">针对</span>同步或时间关键型应用<span style="color: black;">来讲</span>则太不精确。</span></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/f2bc4ee301354409a5131623639a9659~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1725635590&x-signature=3iOHhZRVRF5Mga3L5V87zL6DfoE%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">图2:gPTP基准与gPTP客户端之间的交互</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">gPTP可<span style="color: black;">保证</span>以太网设备中<span style="color: black;">拥有</span>更加精确的时基,<span style="color: black;">一般</span><span style="color: black;">达到</span>微秒级<span style="color: black;">乃至</span>纳秒级。实质上,</span><strong style="color: blue;"><span style="color: black;">gPTP<span style="color: black;">包含</span>两种机制:基准时间分发和传输时间计算。</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">时间从一个或多个时间基准节点(<span style="color: black;">按照</span>IEEE标准为“gPTP主机”)分发到一个或多个客户端(<span style="color: black;">按照</span>IEEE标准为“gPTP从机”)。类似于IEEE 1588的两步过程,gPTP总是连续发送两个帧:“Sync”和“Sync Follow-Up”。客户端<span style="color: black;">运用</span>其中<span style="color: black;">包括</span>的时间戳将其本地时钟重置为基准时间,从而<span style="color: black;">保证</span>网络中的所有设备都<span style="color: black;">运用</span>完全相同的时基。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">然则</span>,<span style="color: black;">仅有</span>将<span style="color: black;">全部</span>网络所需的传输时间<span style="color: black;">亦</span><span style="color: black;">思虑</span>在内,<span style="color: black;">才可</span><span style="color: black;">保证</span>很准确的时基。要实现这一点,应在直接相邻的节点之间始终成对执行对等延迟<span style="color: black;">测绘</span>。<span style="color: black;">这般</span>,<span style="color: black;">每一个</span>节点所测传输时间的总和会产生对等延迟值,继而可<span style="color: black;">按照</span>该值校正gPTP时间。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">传输协议</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">IEEE 1722-AVTP</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">音视频传输协议是<span style="color: black;">经过</span>以太网AVB技术传输音频/视频数据以<span style="color: black;">即时</span>间关键型数据的标准传输协议。它是一种用于<span style="color: black;">经过</span>MAC<span style="color: black;">位置</span><span style="color: black;">拜访</span>设备的轻量级ISO/OSI Layer2协议。<span style="color: black;">因此呢</span>,这种方式无需集成<span style="color: black;">所有</span>的IP协议栈,有助于最大限度地减小项目和设计的规模、成本和<span style="color: black;">繁杂</span>性。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">IEEE 1733-RTP/RTCP</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">RTP和RTCP(IETF RFC 3550)均为基于IP的网络协议,适用于<span style="color: black;">经过</span>以太网传输音频和视频数据。这些协议<span style="color: black;">数年</span>来已广泛用于<span style="color: black;">各样</span>工业级和消费类设备,<span style="color: black;">包含</span>视频监控摄像头和对讲设备。IEEE 1733是RTP/RTCP的改编版本,适用于<span style="color: black;">经过</span>AVB进行同步传输,<span style="color: black;">因此呢</span>可<span style="color: black;">做为</span>基于IP的解决<span style="color: black;">方法</span>替代IEEE 1722。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">流量整形</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">以太网网络<span style="color: black;">一般</span>由<span style="color: black;">海量</span>端点(计算机和电子设备)和网桥(交换机和网关等)<span style="color: black;">构成</span>。无论<span style="color: black;">选取</span>哪种传输协议,数据都会封装成以太网帧,<span style="color: black;">而后</span>从发送方<span style="color: black;">经过</span>多个网桥(跃点)路由到接收方。帧的传输方式和传输时间存在不确定性。传输路径上的网桥将以较快或较慢的速度进行帧转发(存储转发和直通转发)。在网络拥塞的<span style="color: black;">状况</span>下,这些帧有时需要缓冲一段时间,在最糟<span style="color: black;">状况</span>下<span style="color: black;">乃至</span>可能会丢失。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">工业和汽车系统应<span style="color: black;">拥有</span>较低的确定性延迟,并且最重要的一点,必须<span style="color: black;">保证</span>无丢帧<span style="color: black;">危害</span>的<span style="color: black;">靠谱</span>传输。流量整形(“IEEE 802.1Q-服务质量”部分)可<span style="color: black;">处理</span>此<span style="color: black;">需要</span>。流量整形定义了网桥<span style="color: black;">按照</span>帧的优先级对帧进行处理的策略。</span><strong style="color: blue;"><span style="color: black;">流量整形有几种标准,例如:</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">•IEEE 802.1Qav:时间<span style="color: black;">敏锐</span>流的转发和排队<span style="color: black;">加强</span>功能(FQTSS),有时<span style="color: black;">叫作</span>为“基于信用值的整形器”(CBS)。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">•IEEE 802.1Qbv:调度流量的<span style="color: black;">加强</span>功能,<span style="color: black;">一般</span><span style="color: black;">叫作</span>为“时间感知整形器”(TAS)</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">•IEEE 802.1Qch:循环排队和转发</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">•IEEE 802.1Qcr:异步流量整形</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">汽车行业<span style="color: black;">重点</span><span style="color: black;">运用</span>CBS和TAS。</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">CBS-基于信用值的整形器(802.1Qav)</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">运用</span>基于信用值的整形器时,<span style="color: black;">每一个</span>以太网设备都会<span style="color: black;">得到</span>一个用于发送帧的信用值。只要信用值仍为正数,设备就<span style="color: black;">能够</span>继续发送帧。当信用值用完后,设备将<span style="color: black;">没法</span>再发送帧。必须等到<span style="color: black;">弥补</span>信用值后<span style="color: black;">才可</span>再次<span style="color: black;">起始</span>发送。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">该策略可<span style="color: black;">保证</span>带宽的有效利用。其中<span style="color: black;">无</span>预定义的时隙。<span style="color: black;">倘若</span>端点需要间歇性地发送数据,则<span style="color: black;">能够</span>累积其信用值,<span style="color: black;">而后</span>一次<span style="color: black;">所有</span>用完。<span style="color: black;">运用</span>CBS配置AVB网络比较简单。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">TAS-时间感知整形器(802.1Qbv)</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">与Qav<span style="color: black;">区别</span>,IEEE 802.1Qbv策略依赖于时隙模型。该策略并非基于要发送的数据量,而是侧重于传输的频率。节点<span style="color: black;">不可</span>再进行任意时长的发送,但<span style="color: black;">准许</span>进行很规律地传输。这<span style="color: black;">寓意</span>着<span style="color: black;">能够</span>实现更低且更具确定性的延迟。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">而Qbv的缺点是,<span style="color: black;">没法</span><span style="color: black;">保证</span>网络带宽始终得到有效利用。<span style="color: black;">倘若</span>端点不<span style="color: black;">运用</span>其时隙,将会丢失这些时隙以及带宽。但这种影响可<span style="color: black;">经过</span><span style="color: black;">运用</span>帧抢占模式进行抵销(IEEE 802.1Qbu)。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">与AVNU的互操作性</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">系统架构师<span style="color: black;">能够</span><span style="color: black;">经过</span><span style="color: black;">各样</span>可用的组件来实现AVB。<span style="color: black;">能够</span><span style="color: black;">按照</span>系统<span style="color: black;">需求</span>实现<span style="color: black;">区别</span>的AVB子集。虽然这有助于最大限度地减少硬件组件(仅实现<span style="color: black;">实质</span>所需的组件),但<span style="color: black;">亦</span>可能会<span style="color: black;">引起</span><span style="color: black;">有些</span>互操作性问题,<span style="color: black;">由于</span><span style="color: black;">区别</span>供应商<span style="color: black;">供给</span>的设备不<span style="color: black;">必定</span>支持完全相同的AVB功能。<span style="color: black;">况且</span>,工程师有时会以<span style="color: black;">区别</span>的方式来解释IEEE标准,从而使<span style="color: black;">状况</span>变得更加<span style="color: black;">繁杂</span>。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">为了<span style="color: black;">保证</span>供应商之间实现互操作性,AVNU联盟为汽车<span style="color: black;">行业</span>制定了“以太网AVB功能和互操作性规范”,其中定义了<span style="color: black;">每一个</span>设备中应实现的AVB子集和<span style="color: black;">关联</span>参数的基准。<span style="color: black;">针对</span>支持AVB的设备,<span style="color: black;">能够</span>经由<span style="color: black;">外边</span>测试<span style="color: black;">公司</span>或<span style="color: black;">运用</span>内部专用测试设备测试其AVNU兼容性。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;"><span style="color: black;">实质</span>实现</span></strong></p>
<div style="color: black; text-align: left; margin-bottom: 10px;"><img src="https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/17073523638a4747ab8d2d227d2b1589~noop.image?_iz=58558&from=article.pc_detail&lk3s=953192f4&x-expires=1725635590&x-signature=Au8lPcGs5gPS7Pvw1XSA%2Bgv8vSU%3D" style="width: 50%; margin-bottom: 20px;"></div>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">图3:典型的以太网AVB<span style="color: black;">评定</span>系统</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">在<span style="color: black;">实质</span>应用中,支持AVB的网络<span style="color: black;">包含</span>多个组件:交换机、PHY和端点。所有交换机和端点都必须支持AVB<span style="color: black;">才可</span>实现所需的性能。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">得益于IEEE标准、AVNU和OpenAlliance(注:<span style="color: black;">检测</span>R/TM标记)规范,<span style="color: black;">区别</span>供应商<span style="color: black;">供给</span>的组件(如PHY和交换机)如今可实现高水平的互操作性。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">然则</span>,在端点中实现AVB仍然是一项<span style="color: black;">繁杂</span>而繁琐的任务。这些系统<span style="color: black;">一般</span>基于SoC或高端单片机而<span style="color: black;">研发</span>,其中需要集成许多软件:实时操作系统、Autosar架构以及AVB协议栈,这些软件<span style="color: black;">一般</span>需要从第三方<span style="color: black;">得到</span>相应的授权。AVB端点(<span style="color: black;">例如</span>Microchip的LAN9360)是一个令人关注的替代<span style="color: black;">方法</span>。这些端点由一种集成AVB协议的智能以太网<span style="color: black;">掌控</span>器<span style="color: black;">构成</span>。<span style="color: black;">因此呢</span>,AVB<span style="color: black;">能够</span>直接<span style="color: black;">安排</span>为基于硬件的<span style="color: black;">处理</span><span style="color: black;">方法</span>,而无需进行软件<span style="color: black;">研发</span>。</span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">结论</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">自IEEE的AVB工作<span style="color: black;">构成</span>立<span style="color: black;">败兴</span>,AVB/TSN技术<span style="color: black;">此刻</span>已达到很高的成熟度水平。“AVB汽车”<span style="color: black;">已然</span>上路,越来越多的原始设备制造商<span style="color: black;">起始</span>参与其中。</span><strong style="color: blue;"><span style="color: black;">得益于其开放式的标准化技术,许多<span style="color: black;">拥有</span>互操作性的硬件和软件已<span style="color: black;">做为</span>优化的COTS<span style="color: black;">制品</span>供人们<span style="color: black;">运用</span>。</span></strong><span style="color: black;">在过去,“全以太网汽车”愿景曾备受质疑,而如今它<span style="color: black;">再也不</span>是遥不可及的空想。</span></p>
期待与你深入交流,共探知识的无穷魅力。 你的言辞如同繁星闪烁,点亮了我心中的夜空。 楼主听话,多发外链好处多,快到碗里来!外链论坛 http://www.fok120.com/
页:
[1]