中科院等提出类脑神经元模型
建更加通用的人工智能,让模型具有更加广泛和通用的认知能力,是当前人工智能(AI)领域发展的重要目标。目前流行的大模型路径是基于Scaling Law(尺度定律)去构建更大、更深和更宽的神经网络,可称之为“基于外生复杂性”的通用智能实现方法钢构。这一路径面临着计算资源及能源消耗难以为继、可解释性不足等问题。中国科学院自动化研究所李国齐、徐波研究团队联合清华大学、北京大学等借鉴大脑神经元复杂动力学特性,提出了“基于内生复杂性”的类脑神经元模型构建方法,改善了传统模型通过向外拓展规模带来的计算资源消耗问题,为有效利用神经科学发展人工智能提供了示例。
太棒了、厉害、为你打call、点赞、非常精彩等。 回顾过去一年,是艰难的一年;展望未来,是辉煌的一年。
页:
[1]