4lqedz 发表于 2024-8-4 10:41:40

【技术分享】数字孪生10个技术栈:数据清洗


    <h3 style="color: black; text-align: left; margin-bottom: 10px;"><span style="color: black;"><span style="color: black;">1、</span>数据清洗含义和所需工作</span></h3>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">在可视化大屏中,数据清洗指的是对原始数据进行处理和筛选,以<span style="color: black;">保证</span>数据的准确性、完整性和一致性。数据清洗是</span><span style="color: black;">数据预处理</span><span style="color: black;">的一部分,它<span style="color: black;">包含</span>以下几个方面的工作:</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_jpg/4ELjTa4VQSVlYQClxHmPrnhbicPicqkKKslRXpAUx9IJtUDE2o6RdHrDXDbypZ7R0dDBvCjAIzHolQcaCPFKesrw/640?wx_fmt=jpeg&amp;from=appmsg&amp;wxfrom=5&amp;tp=webp&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;">缺失值处理:</strong>检测和处理数据中的缺失值,<span style="color: black;">能够</span><span style="color: black;">经过</span>填充缺失值、删除缺失值或<span style="color: black;">运用</span>插值等<span style="color: black;">办法</span>来处理。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">反常</span>值处理:</strong>检测和处理数据中的<span style="color: black;">反常</span>值,<span style="color: black;">能够</span><span style="color: black;">经过</span>删除<span style="color: black;">反常</span>值、替换<span style="color: black;">反常</span>值或<span style="color: black;">运用</span>统计<span style="color: black;">办法</span>来处理。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;">数据格式转换:</strong>将数据转换为正确的格式,例如将字符串转换为数字、日期转换为标准格式等。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_jpg/4ELjTa4VQSVlYQClxHmPrnhbicPicqkKKsxCZpHcbfr6smFJ5ew1Oib874N9vfMvib9lmcAQMIQlmnXZOhFt74LAnw/640?wx_fmt=jpeg&amp;from=appmsg&amp;wxfrom=5&amp;tp=webp&amp;wx_lazy=1&amp;wx_co=1" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;">数据去重:</strong>检测和删除数据中的重复值,以<span style="color: black;">保证</span>数据的<span style="color: black;">独一</span>性。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;">数据标准化:</strong>对数据进行标准化处理,以<span style="color: black;">保证</span>数据在相同的尺度上进行比较和分析。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;">数据<span style="color: black;">相关</span>和合并:</strong>将多个数据源中的数据进行<span style="color: black;">相关</span>和合并,以便进行综合分析和可视化展示。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_jpg/4ELjTa4VQSVlYQClxHmPrnhbicPicqkKKsU8tciamqia7eOuv3l7GhQW9ia4SkDF3r3cbdmzVJRDMsVODucsY7k2WTw/640?wx_fmt=jpeg&amp;from=appmsg&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1&amp;tp=webp" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">经过</span>进行数据清洗,<span style="color: black;">能够</span><span style="color: black;">加强</span>数据的质量和准确性,减<span style="color: black;">少许</span>据分析和可视化过程中的误差和偏差,使可视化大屏呈现的数据更加<span style="color: black;">靠谱</span>和可信。</span></p>
    <h3 style="color: black; text-align: left; margin-bottom: 10px;"><span style="color: black;"><span style="color: black;">2、</span><span style="color: black;">为何</span>做数据清洗</span></h3>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">数据清洗在数据分析和可视化过程中扮演着重要的角色,<span style="color: black;">原由</span>如下:</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">加强</span>数据质量:</strong>数据清洗<span style="color: black;">能够</span><span style="color: black;">帮忙</span>检测和处理数据中的错误、缺失值、<span style="color: black;">反常</span>值和重复值,从而<span style="color: black;">加强</span>数据的准确性和完整性。清洗后的数据更加<span style="color: black;">靠谱</span>,<span style="color: black;">能够</span>减少分析和决策过程中的误差和偏差。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">保准</span>数据一致性:</strong>数据清洗<span style="color: black;">能够</span><span style="color: black;">保证</span>数据在<span style="color: black;">区别</span>数据源之间的一致性。<span style="color: black;">经过</span>对数据进行标准化、转换和合并,<span style="color: black;">能够</span>消除<span style="color: black;">区别</span>数据源之间的格式差异和数据冲突,使数据在可视化大屏中的展示更加统一和准确。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_jpg/4ELjTa4VQSVlYQClxHmPrnhbicPicqkKKsurkGQnqR39aT9myAaCZctCibYC760ve7Q8d7ymMibvjLmO1iadBmdfdKw/640?wx_fmt=jpeg&amp;from=appmsg&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1&amp;tp=webp" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;">支持数据分析和决策:</strong>清洗后的数据更加适合进行数据分析和决策。<span style="color: black;">经过</span>清洗,<span style="color: black;">能够</span>消除数据中的噪声和干扰,<span style="color: black;">明显</span>数据的关键特征和趋势,为数据分析和决策<span style="color: black;">供给</span>更有<span style="color: black;">道理</span>和<span style="color: black;">靠谱</span>的依据。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;"><span style="color: black;">加强</span>可视化效果:</strong>清洗后的数据<span style="color: black;">能够</span>更好地支持可视化展示。清洗<span style="color: black;">能够</span>使数据更加规范和一致,减<span style="color: black;">少许</span>据在可视化过程中的混乱和误导性。清洗后的数据<span style="color: black;">能够</span>更好地呈<span style="color: black;">此刻</span>可视化大屏上,<span style="color: black;">供给</span>更清晰、易懂和有价值的信息。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">综上所述,数据清洗是<span style="color: black;">保证</span>数据质量、数据一致性和数据<span style="color: black;">靠谱</span>性的重要<span style="color: black;">过程</span>,<span style="color: black;">针对</span>数据分析和可视化的准确性和有效性起着至关重要的<span style="color: black;">功效</span>。</span></p>
    <h3 style="color: black; text-align: left; margin-bottom: 10px;"><span style="color: black;"><span style="color: black;">3、</span>数据清洗的方式有<span style="color: black;">那些</span></span></h3>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">数据清洗<span style="color: black;">能够</span><span style="color: black;">运用</span>多种方式进行,<span style="color: black;">详细</span><span style="color: black;">选取</span>的方式取决于数据的特点和清洗的<span style="color: black;">目的</span>。以下是<span style="color: black;">平常</span>的数据清洗方式:</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_png/4ELjTa4VQSVlYQClxHmPrnhbicPicqkKKspaAjiaggGiaHaOtywVTkHCO4I4Q9S818z41Sb5HLCOLLfdxIFWFSaiaOw/640?wx_fmt=png&amp;from=appmsg&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1&amp;tp=webp" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;">1、缺失值处理:处理数据中的缺失值,<span style="color: black;">能够</span>采用以下方式:</strong></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">删除缺失值:<span style="color: black;">倘若</span>缺失值较少且对分析结果的影响较小,<span style="color: black;">能够</span><span style="color: black;">选取</span>删除<span style="color: black;">包括</span>缺失值的行或列。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">填充缺失值:<span style="color: black;">能够</span><span style="color: black;">运用</span>插值、均值、中位数、</span><span style="color: black;">众数</span><span style="color: black;">等<span style="color: black;">办法</span>来填充缺失值。</span></span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;">2、<span style="color: black;">反常</span>值处理:处理数据中的<span style="color: black;">反常</span>值,</strong><span style="color: black;">能够</span>采用以下方式:</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">删除<span style="color: black;">反常</span>值:<span style="color: black;">倘若</span><span style="color: black;">反常</span>值是数据录入错误或<span style="color: black;">测绘</span>误差<span style="color: black;">引起</span>的,<span style="color: black;">能够</span><span style="color: black;">选取</span>删除<span style="color: black;">反常</span>值。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">替换<span style="color: black;">反常</span>值:<span style="color: black;">能够</span><span style="color: black;">运用</span>平均值、中位数、截断值等来替换<span style="color: black;">反常</span>值,使其更接近正常范围。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_jpg/4ELjTa4VQSVlYQClxHmPrnhbicPicqkKKshUwNsJZiaQmYKlDOYLcuNC8rBS3iaUvticyZhPt5mdxDp1qrRmwZYvKtw/640?wx_fmt=jpeg&amp;from=appmsg&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1&amp;tp=webp" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;">3数据格式转换:将数据转换为正确的格式,</strong><span style="color: black;">能够</span>采用以下方式:</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">类型转换:将字符串转换为数字、日期转换为标准格式等。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">格式化:对数据进行格式化处理,使其符合特定的规范和<span style="color: black;">需求</span>。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;">数据去重:检测和删除数据中的重复值,</strong><span style="color: black;">能够</span>采用以下方式:</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">基于某一列或多列进行去重:<span style="color: black;">按照</span>指定的列,删除重复的行。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">基于<span style="color: black;">全部</span>数据集进行去重:删除<span style="color: black;">全部</span>数据集中重复的行。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_jpg/4ELjTa4VQSVlYQClxHmPrnhbicPicqkKKsVuwAyMDMxLXereUkguE9YEXL7Up6ZTcRhs04VwoDicXPU2bWBxkjsicA/640?wx_fmt=jpeg&amp;from=appmsg&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1&amp;tp=webp" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;">数据标准化:对数据进行标准化处理,</strong><span style="color: black;">能够</span>采用以下方式:</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">最小-最大标准化:将数据缩放到指定的范围内,如0到1之间。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">Z-score标准化:将数据转换为均值为0、标准差为1的分布。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><strong style="color: blue;">数据<span style="color: black;">相关</span>和合并:将多个数据源中的数据进行<span style="color: black;">相关</span>和合并</strong>,<span style="color: black;">能够</span>采用以下方式:</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">基于<span style="color: black;">一起</span>字段进行<span style="color: black;">相关</span>:<span style="color: black;">经过</span><span style="color: black;">一起</span>的字段将<span style="color: black;">区别</span>数据源的数据进行<span style="color: black;">相关</span>。</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;"><span style="color: black;">运用</span>连接操作进行合并:<span style="color: black;">运用</span>连接操作(如内连接、外连接、左连接、右连接)将<span style="color: black;">区别</span>数据源的数据合并为一个数据集</span></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://mmbiz.qpic.cn/mmbiz_jpg/4ELjTa4VQSVlYQClxHmPrnhbicPicqkKKsfdVy2Z0ZT2GIx9UgxNNP0zOWsRQp5yJuZg4qrKuggmOflzkqDSF0lw/640?wx_fmt=jpeg&amp;from=appmsg&amp;wxfrom=5&amp;wx_lazy=1&amp;wx_co=1&amp;tp=webp" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">以上是<span style="color: black;">平常</span>的数据清洗方式,<span style="color: black;">按照</span><span style="color: black;">详细</span><span style="color: black;">状况</span><span style="color: black;">选取</span>适合的方式进行数据清洗,以<span style="color: black;">保证</span>数据的准确性和一致性。</span></p>




情迷布拉格 发表于 2024-8-20 11:39:18

回顾历史,我们感慨万千;放眼未来,我们信心百倍。

jm2020 发表于 2024-8-29 00:07:53

你的话语如春风拂面,让我感到无比温暖。

qzmjef 发表于 2024-10-1 01:46:40

外贸B2B平台有哪些?
页: [1]
查看完整版本: 【技术分享】数字孪生10个技术栈:数据清洗