双重抗癌效果!叶海峰团队揭示基于细菌的创新癌症治疗办法
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://q5.itc.cn/q_70/images03/20240412/8702d61693e8497ba78c8a21be8b772f.png" style="width: 50%; margin-bottom: 20px;"></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">作者:Rainbow</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">导读:</strong><strong style="color: blue;">基于细菌的疗法是癌症治疗的有力策略,但<span style="color: black;">因为</span>缺乏可调基因开关来安全地调节治疗货物的局部表达和释放,其临床应用受到限制。</strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">4月11日,华东师范大学叶海峰、管宁子<span style="color: black;">一起</span>通讯在期刊《Cell Reports Medicine》上在线<span style="color: black;">发布</span>题为“Sonogenetics-controlled synthetic designer cells for cancer therapy in tumor mouse models”的<span style="color: black;">科研</span>论文,<strong style="color: blue;">除了<span style="color: black;">研发</span>用于肿瘤治疗的安全和高性能的设计细菌外,<span style="color: black;">科研</span>还展示了一种声遗传学<span style="color: black;">掌控</span>的治疗平台,可用于基于细菌的<span style="color: black;">精细</span>医疗。</strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="https://q3.itc.cn/q_70/images03/20240412/45ce01318d984a75aeecc8e844a69c56.png" style="width: 50%; margin-bottom: 20px;"></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(24)00182-4</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">科研</span>背景</strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">01 </span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">基因工程细菌<span style="color: black;">做为</span><span style="color: black;">疾患</span>诊断和治疗的活体和智能设备越来越受到关注。工程细菌已被<span style="color: black;">安排</span>为监测胃肠道<span style="color: black;">疾患</span>的哨兵,肝转移,肝功能<span style="color: black;">阻碍</span>,促进代谢<span style="color: black;">错乱</span>的改善,并防止病原体感染。<span style="color: black;">另外</span>,某些专性或兼性厌氧细菌已被证明<span style="color: black;">能够</span><span style="color: black;">选取</span>性地定植肿瘤,<span style="color: black;">由于</span>它们<span style="color: black;">能够</span>浸润肿瘤,<span style="color: black;">尤其</span>是免疫缺陷的缺氧核心。<strong style="color: blue;"><span style="color: black;">因此呢</span>,这些细菌已被设计为肿瘤特异性<span style="color: black;">药品</span>递送载体,以局部释放治疗有效载荷以<span style="color: black;">控制</span>肿瘤生长。</strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">该<span style="color: black;">行业</span>的初步工作<span style="color: black;">运用</span>化学线索,如水杨酸盐或L -阿拉伯糖<span style="color: black;">做为</span>基因表达的远程<span style="color: black;">掌控</span>触发器。尽管如此,它们<span style="color: black;">针对</span>大<span style="color: black;">都数</span>治疗应用<span style="color: black;">来讲</span>还<span style="color: black;">不足</span>,<span style="color: black;">由于</span>化学品是系统施用的,<span style="color: black;">没</span>法进行时空<span style="color: black;">掌控</span>。光遗传学<span style="color: black;">近期</span><span style="color: black;">快速</span>发展<span style="color: black;">作为</span>一种<span style="color: black;">拥有</span>高度时空特异性和可逆性的非侵入性技术。光敏蛋白,如光-氧-电压结构域和细菌光敏色素P1已被用于设计光遗传学开关以调节细菌中的基因表达;然而,<span style="color: black;">因为</span>对深层组织的渗透不良和潜在的光毒性,它们的<span style="color: black;">身体</span>应用受到阻碍。<strong style="color: blue;"><span style="color: black;">或</span>,超声(US),其特点是<span style="color: black;">没</span>创性、时空特异性、安全性和组织穿透性,在生物医学工程的诊断和治疗应用中<span style="color: black;">导致</span>了<span style="color: black;">极重</span>的关注。</strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">科研</span><span style="color: black;">发掘</span></strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">02 </span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">科研</span>人员<span style="color: black;">研发</span>了一种可声激活的集成基因电路(SINGER),用于鼠伤寒沙门氏菌VNP20009的减毒菌株,其耐受性和安全性已在多项1期临床<span style="color: black;">实验</span>中在<span style="color: black;">病人</span>中得到证明。该电路在质粒上进行,并基于热敏转录<span style="color: black;">控制</span>因子TlpA39进行设计,一种源自鼠伤寒沙门氏菌的TlpA突变体,它经历温度依赖性变构,并在其低温二聚体状态下特异性结合与含有TlpA特异性结合位点的合成同源<span style="color: black;">起步</span>子结合并阻断转录。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">经过</span>设计不同的合成<span style="color: black;">起步</span>子和核糖体结合位点(RBS)筛选,<span style="color: black;">科研</span>人员<span style="color: black;">得到</span>了优化的US触发的转基因表达系统,<span style="color: black;">拥有</span>低背景和高诱导效率。<span style="color: black;">科研</span>人员在VNP20009中证明了SINGER系统介导的US诱导的基因表达和蛋白质分泌。<span style="color: black;">另外</span>,在US照射下,肿瘤定植VNP20009产生的治疗物质成功释放到肿瘤微环境中,<span style="color: black;">控制</span>了肿瘤生长,并<span style="color: black;">明显</span><span style="color: black;">加强</span>了携带多个模型肿瘤的小鼠的存活率。<strong style="color: blue;">SINGER系统具有<span style="color: black;">没</span>创性、稳健性、组织穿透性强、精确可控等特点,为<span style="color: black;">研发</span>基于细菌的创新抗癌疗法<span style="color: black;">供给</span>了巨大的前景。</strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q5.itc.cn/q_70/images03/20240412/c450d6650bd8495296f69810630580be.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"><span style="color: black;">科研</span>结论</strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">03 </span></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">综上所述,<strong style="color: blue;">除了<span style="color: black;">研发</span>用于肿瘤治疗的安全和高性能的设计细菌外,<span style="color: black;">科研</span>还展示了一种声遗传学<span style="color: black;">掌控</span>的治疗平台,可用于基于细菌的<span style="color: black;">精细</span>医疗。</strong></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q0.itc.cn/q_70/images03/20240412/748c5c7f5dc44666a9928cda9693a86b.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">参考资料:</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(24)00182-4</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">注:本文旨在介绍医学<span style="color: black;">科研</span><span style="color: black;">发展</span>,<span style="color: black;">不可</span><span style="color: black;">做为</span>治疗<span style="color: black;">方法</span>参考。如需<span style="color: black;">得到</span>健康<span style="color: black;">指点</span>,请至正规医院就诊。</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">热门·直播/活动</p>
<p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">
页:
[1]