6257rv7 发表于 2024-5-25 06:22:33

氢气对癌症的预防治疗功效


    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">气体信号分子,<span style="color: black;">包含</span>一氧化碳(CO)、一氧化氮(NO)和硫化氢,<span style="color: black;">已然</span>被证实<span style="color: black;">拥有</span>癌症治疗<span style="color: black;">潜能</span>,这为癌症治疗指出了新的方向。近年来,一系列<span style="color: black;">科研</span>证实,氢气这种弱还原性气体<span style="color: black;">亦</span>对<span style="color: black;">各样</span>癌症<span style="color: black;">拥有</span>治疗效果,并且<span style="color: black;">能够</span>缓解放疗和化疗<span style="color: black;">导致</span>的氧化应激,减少组织<span style="color: black;">损害</span>和免疫<span style="color: black;">控制</span>,从而改善预后。<span style="color: black;">同期</span>,氢气还<span style="color: black;">拥有</span>免疫调节<span style="color: black;">功效</span>,能够抑制T细胞耗竭并<span style="color: black;">加强</span>T细胞的抗肿瘤功能。值得<span style="color: black;">重视</span>的是,人类肠道菌群<span style="color: black;">每日</span><span style="color: black;">能够</span>产生<span style="color: black;">海量</span>的氢气,这<span style="color: black;">作为</span>维持机体抵抗<span style="color: black;">疾患</span>如肿瘤的自然屏障。尽管氢气潜在的抗肿瘤机制仍需进一步<span style="color: black;">科研</span>,但先前的<span style="color: black;">科研</span><span style="color: black;">已然</span><span style="color: black;">显示</span>,氢气<span style="color: black;">能够</span><span style="color: black;">选取</span>性地清除高毒性的活性氧物种(ROS),并<span style="color: black;">控制</span>癌细胞中<span style="color: black;">各样</span>依赖ROS的信号通路,从而<span style="color: black;">控制</span>癌细胞增殖和转移。氢气清除ROS的能力<span style="color: black;">亦</span>可能是其免疫调节功能的潜在机制。在本文中,<span style="color: black;">咱们</span>回顾了肠道菌群产生的氢气对机体免疫稳态的<span style="color: black;">要紧</span>性,氢气在癌症治疗中的<span style="color: black;">功效</span>及其潜在机制,以及氢气的<span style="color: black;">详细</span>应用,为癌症<span style="color: black;">病人</span>的综合治疗<span style="color: black;">供给</span>新的思路。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">该综述作者<span style="color: black;">重点</span>来自复旦大学中山医院癌症<span style="color: black;">科研</span>中心</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">Zhou W, Zhang J, Chen W, Miao C. Prospects of molecular hydrogen in cancer prevention and treatment. J Cancer Res Clin Oncol.<strong style="color: blue;">2024 Mar</strong> 31;150(4):170.</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">Prospects of molecular hydrogen in cancer prevention and treatment | Journal of Cancer Research and Clinical Oncology (springer.com)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//p0.itc.cn/q_70/images01/20231017/a6f6d458494b4aff990545560b28bb26.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <h1 style="color: black; text-align: left; margin-bottom: 10px;"> <strong style="color: blue;"><span style="color: black;">1、</span>前言</strong></h1>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">按照</span>世界卫生组织(WHO)的最新统计数据,癌症在<span style="color: black;">全世界</span>183个国家中的112个国家是<span style="color: black;">引起</span>死亡的<span style="color: black;">第1</span>或第二大<span style="color: black;">原由</span>,对人类健康构<span style="color: black;">成为了</span>严重威胁。整体而言,<span style="color: black;">全世界</span>癌症的发病率和死亡率的<span style="color: black;">包袱</span>还将继续<span style="color: black;">增多</span>。<span style="color: black;">日前</span>,手术仍然是治疗实体瘤的<span style="color: black;">重点</span><span style="color: black;">办法</span>,辅以放疗和化疗,<span style="color: black;">包含</span>多种细胞毒性<span style="color: black;">药品</span>、酪氨酸激酶<span style="color: black;">控制</span>剂,以及免疫疗法,如免疫<span style="color: black;">检测</span>点<span style="color: black;">控制</span>剂,例如抗程序性细胞死亡1(PD-1)、抗程序性细胞死亡配体1(PD-L1)和抗细胞毒性T淋巴细胞<span style="color: black;">关联</span>蛋白4(CTLA-4)抗体。然而,这些<span style="color: black;">办法</span>在癌症治疗中<span style="color: black;">常常</span>未能取得令人满意的临床效果。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">气体信号分子是小分子气体,<span style="color: black;">经过</span>调节信号转导影响细胞生物学,例如一氧化氮(NO)、一氧化碳(CO)和硫化氢(H2S)。<span style="color: black;">科研</span>证实,多种气体信号分子<span style="color: black;">拥有</span>抗肿瘤特性,<span style="color: black;">能够</span>直接<span style="color: black;">运用</span>或作为特定代理<span style="color: black;">制品</span>用于抗癌治疗。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">近期</span>的<span style="color: black;">科研</span>证实了氢气(H2)是另一种在癌症治疗中<span style="color: black;">表示</span>出有趣<span style="color: black;">潜能</span>的气体信号分子。自1975年Dole等人<span style="color: black;">发掘</span>高浓度的H2<span style="color: black;">能够</span>治愈<span style="color: black;">移植</span>小鼠皮肤的鳞状细胞癌<span style="color: black;">败兴</span>,众多实验室和临床<span style="color: black;">科研</span><span style="color: black;">已然</span>证实H2对<span style="color: black;">各样</span>癌症都有效。<span style="color: black;">另外</span>,H2与放疗和细胞毒性<span style="color: black;">药品</span>等抗癌疗法有效协同<span style="color: black;">功效</span>,减少对身体的损害并改善<span style="color: black;">病人</span>预后。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">在2007年的一个里程碑式<span style="color: black;">科研</span>中,Oshawa等人<span style="color: black;">发掘</span>H2<span style="color: black;">能够</span><span style="color: black;">选取</span>性中和高度有毒的活性氧物种(ROS)(羟基自由基·OH和过氧亚硝酸盐ONOO–),而不影响其他生理性ROS。H2的ROS清除能力可能是其抗肿瘤活性的<span style="color: black;">重要</span>潜在机制。然而,<span style="color: black;">因为</span>缺乏其他气体信号分子所<span style="color: black;">拥有</span>的特定受体,氢气在肿瘤治疗中的潜在机制仍存在争议。在这篇综述中,<span style="color: black;">咱们</span><span style="color: black;">首要</span>讨论了生理<span style="color: black;">前提</span>下肠道菌群代谢H2对人<span style="color: black;">身体</span>环境稳态的<span style="color: black;">要紧</span>性。<span style="color: black;">而后</span><span style="color: black;">咱们</span>讨论了H2<span style="color: black;">经过</span>其独特的抗氧化能力进行抗肿瘤<span style="color: black;">功效</span>的机制,以<span style="color: black;">供给</span>氢气在肿瘤治疗中<span style="color: black;">功效</span>机制的全面解释。最后,<span style="color: black;">咱们</span>讨论了H2不同应用模式的<span style="color: black;">详细</span><span style="color: black;">功效</span>,并探讨了氢气在临床肿瘤治疗中应用的前景。</p>
    <h1 style="color: black; text-align: left; margin-bottom: 10px;"> <strong style="color: blue;"><span style="color: black;">2、</span>抗肿瘤屏障:肠道菌群产生的氢气</strong></h1>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">在正常的生理<span style="color: black;">前提</span>下,成人肠道微生物群<span style="color: black;">每日</span><span style="color: black;">能够</span>产生<span style="color: black;">海量</span>的H2,这些H2<span style="color: black;">能够</span>调节肠道菌群及其代谢产物的平衡,这<span style="color: black;">针对</span>人类的免疫稳态至关<span style="color: black;">要紧</span>。这<span style="color: black;">显示</span>H2是身体的自然抗肿瘤屏障,并为其临床<span style="color: black;">运用</span><span style="color: black;">供给</span>了新策略。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">2.1肠道中的H2代谢</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">肠道产氢菌<span style="color: black;">重点</span>利用<span style="color: black;">各样</span>不可消化的碳水化合物<span style="color: black;">做为</span>底物进行厌氧氧化能量生产,<span style="color: black;">包含</span>淀粉、纤维素和<span style="color: black;">有些</span>糖类。这个过程<span style="color: black;">能够</span>产生<span style="color: black;">海量</span>的H2,它被氢营养菌<span style="color: black;">快速</span>吸收和利用。H2参与这一系列反应<span style="color: black;">做为</span>电子传递体,并且是肠道菌群<span style="color: black;">存活</span>和增殖的<span style="color: black;">要紧</span>能源物质。大部分未被菌群<span style="color: black;">运用</span>的H2<span style="color: black;">经过</span><span style="color: black;">呼气</span>和肛门排出,其余的<span style="color: black;">能够</span>进入循环或穿透肠腔和腹膜进入腹腔。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">氢气营养菌<span style="color: black;">重点</span><span style="color: black;">包含</span>还原性产醋菌、硫酸盐还原菌(SRB)和产甲烷菌,它们分别将H2氧化成醋酸、H2S和CH4。肠道中的H2浓度不仅被动地响应这些菌群的平衡,还<span style="color: black;">经过</span>氢分压(pH2)<span style="color: black;">掌控</span>产氢菌和氢营养菌的平衡。例如,一项<span style="color: black;">科研</span><span style="color: black;">发掘</span>,富氢水(HRW)<span style="color: black;">弥补</span>剂<span style="color: black;">明显</span><span style="color: black;">控制</span>了机会主义致病大肠杆菌E. coli的扩张,并<span style="color: black;">经过</span>调节肠道菌群的H2代谢<span style="color: black;">增多</span>了<span style="color: black;">身患</span>结肠炎的小鼠的肠道完整性。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">科研</span>证实,肠道菌群失调<span style="color: black;">能够</span>影响全身多个器官癌症的<span style="color: black;">出现</span>和发展,<span style="color: black;">包含</span>结直肠癌。尽管产氢和氢营养微生物涵盖了大部分肠道菌群,但其中<span style="color: black;">包括</span>的菌群的<span style="color: black;">详细</span>形态和代谢差异很大,缺乏适当的<span style="color: black;">归类</span>学,<span style="color: black;">因此呢</span>直接<span style="color: black;">科研</span>肠道H2代谢与癌症之间关系的<span style="color: black;">文案</span>很少。<span style="color: black;">有些</span><span style="color: black;">科研</span>调查了氢化酶的基因组和宏基因组分布,氢化酶是催化H2氧化和演化的可逆酶,以<span style="color: black;">认识</span><span style="color: black;">更加多</span>关于H2代谢对肠道生态系统的贡献。<span style="color: black;">按照</span>结合金属辅因子的不同,Greening等人确定了4组(22个亚组)-氢化酶,3组(6种同工型)-氢化酶,以及一小群-氢化酶。这种氢化酶多样性支持了肠道菌群的<span style="color: black;">重要</span>代谢途径,如基于H2的<span style="color: black;">呼气</span>、发酵和固碳过程,反映了H2代谢在维持微生物生长和<span style="color: black;">存活</span>中的范围。到<span style="color: black;">日前</span>为止,作者指出大<span style="color: black;">都数</span><span style="color: black;">关联</span><span style="color: black;">科研</span>仅关注氢化酶系统<span style="color: black;">生长</span>树的几个分支和<span style="color: black;">广泛</span>微生物树中的一小部分生物。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">然而,很容易<span style="color: black;">发掘</span>,肠道菌群产生的H2<span style="color: black;">能够</span>参与调节与致癌<span style="color: black;">功效</span><span style="color: black;">关联</span>的<span style="color: black;">各样</span>菌群代谢产物,例如H2<span style="color: black;">能够</span>清除ROS并促进短链脂肪酸(SCFAs)的产生。例如,一项<span style="color: black;">科研</span><span style="color: black;">显示</span>,<span style="color: black;">经过</span>调节肠道菌群的<span style="color: black;">构成</span>,口服HRW<span style="color: black;">能够</span>在小鼠的盲肠内容物和循环中促进SCFAs的产生。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">相比之下,高SRB和含硫蛋白<span style="color: black;">膳食</span>与结肠癌的发展<span style="color: black;">相关</span>,这可能会破坏细胞色素氧化酶,<span style="color: black;">控制</span>丁酸利用,阻断粘液合成,并<span style="color: black;">经过</span>产生H2S<span style="color: black;">导致</span>DNA甲基化。<span style="color: black;">另外</span>,肠道菌群过度产生H2S在肠道肿瘤的<span style="color: black;">出现</span>和发展中起着<span style="color: black;">要紧</span><span style="color: black;">功效</span>。矛盾的是,<span style="color: black;">各样</span>含硫<span style="color: black;">膳食</span>已被证明<span style="color: black;">拥有</span><span style="color: black;">长时间</span>的抗肿瘤特性,如大蒜和十字花科蔬菜。<span style="color: black;">咱们</span>认为部分<span style="color: black;">原由</span>是在不同的<span style="color: black;">膳食</span>环境中,SRB与其他氢代谢菌群在肠腔内的平衡。<span style="color: black;">另外</span>,SRB代谢的H2和H2S的平衡可能是潜在的机制(图1)。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q8.itc.cn/images01/20240408/5d411c32b4be4ee39c115781dd167436.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">图1肠道菌群中的H2代谢调节肠道健康。</strong>产氢菌在人类结肠中的发酵过程中产生H2,<span style="color: black;">引起</span>pH2<span style="color: black;">快速</span><span style="color: black;">增多</span>,这限制了进一步的发酵。三组氢营养(利用H2)微生物<span style="color: black;">能够</span>氧化H2,<span style="color: black;">同期</span>降低pH2,使发酵得以继续。SRB产生的H2S<span style="color: black;">能够</span>损害肠道上皮细胞并诱发炎症和肿瘤<span style="color: black;">出现</span>,而H2<span style="color: black;">能够</span><span style="color: black;">经过</span>产生SCFA和清除ROS来拮抗H2S的恶性效应。SCFAs:短链脂肪酸;SRB:硫酸盐还原菌;pH2:氢分压</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q7.itc.cn/images01/20240408/2f6f76a693d14d82b1f54a676c97ad89.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">图2由肠道菌群产生的H2<span style="color: black;">守护</span>多系统健康和免疫稳态。</strong>在肠道中产生的氢气<span style="color: black;">能够</span>穿透腹腔或进入血流,对全身多个器官起到<span style="color: black;">守护</span><span style="color: black;">功效</span>。另一方面,氢气是肠道菌群产生短链脂肪酸(SCFA)的底物。它促进SCFA的产生,SCFA是肠道上皮细胞和免疫细胞的<span style="color: black;">要紧</span>能量物质,维持肠道屏障的完整性和全身免疫系统的稳定性。COPD:慢性阻塞性肺病;ARDS:急性<span style="color: black;">呼气</span>窘迫综合症;SCFA:短链脂肪酸。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"> 2.2肠道菌群产生的氢气有助于维持<span style="color: black;">身体</span>稳态。</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">肠道中的H2代谢不仅对肠道健康至关<span style="color: black;">要紧</span>,<span style="color: black;">况且</span><span style="color: black;">针对</span>多个器官的氧化还原平衡和免疫稳态<span style="color: black;">亦</span>至关<span style="color: black;">要紧</span>(图2)。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">科研</span><span style="color: black;">显示</span>,H2能够维持肠道屏障的完整性,减少大鼠的肠道炎症和<span style="color: black;">损害</span>,并保护大脑、肺部、肝脏等器官的缺血再灌注。H2<span style="color: black;">针对</span>盆腔健康<span style="color: black;">亦</span>是<span style="color: black;">基本</span>性的,<span style="color: black;">保准</span>器官功能。在男性和女性的生殖器官,如睾丸和卵巢,受损<span style="color: black;">引起</span>功能<span style="color: black;">阻碍</span>后,<span style="color: black;">弥补</span>H2<span style="color: black;">能够</span>有效降低氧化应激并促进器官功能的恢复。尽管许多<span style="color: black;">科研</span>集中在外源性H2<span style="color: black;">弥补</span>上,但肠道中的H2产生与吸入H2和口服HRW<span style="color: black;">加强</span><span style="color: black;">身体</span>H2水平<span style="color: black;">同样</span>有效。例如,果糖的给药促进了腹膜内H2浓度11倍的<span style="color: black;">增多</span>以及血液中H2的<span style="color: black;">明显</span><span style="color: black;">增多</span>。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">SCFA是肠道上皮和多种免疫细胞的<span style="color: black;">要紧</span>能源<span style="color: black;">源自</span>,<span style="color: black;">同期</span><span style="color: black;">亦</span>是维持全身免疫稳态的肠-肺轴和肠-脑轴之间的通讯物质。由肠道细菌产生的H2是SCFA合成的底物,并促进SCFA的合成。<span style="color: black;">科研</span><span style="color: black;">发掘</span>,HRW<span style="color: black;">能够</span><span style="color: black;">经过</span>调节肠道菌群来<span style="color: black;">增多</span>肠道中的丙酸、丁酸和总SCFAs,以治疗帕金森病等脑<span style="color: black;">疾患</span>。促进肠道中H2产生的<span style="color: black;">膳食</span>或<span style="color: black;">药品</span>,如高纤维<span style="color: black;">膳食</span>和乳糖,<span style="color: black;">亦</span>促进SCFAs的产生。在小鼠的一项<span style="color: black;">科研</span>中<span style="color: black;">显示</span>,HRW<span style="color: black;">能够</span><span style="color: black;">经过</span>调节特定的粘膜炎<span style="color: black;">关联</span>的粘液溶解细菌,<span style="color: black;">经过</span>H2-H2代谢微生物-SCFAs轴强化肠道屏障,<span style="color: black;">保证</span><span style="color: black;">身体</span>环境稳定。</p>
    <h1 style="color: black; text-align: left; margin-bottom: 10px;"> <span style="color: black;">3、</span>氢气的抗肿瘤效果的潜在机制</h1>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">3.1 氢气的抗肿瘤和协同抗肿瘤效果</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">从Dole等人的<span style="color: black;">科研</span><span style="color: black;">起始</span>,<span style="color: black;">她们</span><span style="color: black;">发掘</span>高浓度的H2治愈了在小鼠皮肤上生长的鳞状细胞癌,多项<span style="color: black;">科研</span>证实了H2的抗肿瘤效果。Wang等人<span style="color: black;">报告</span>,在细胞和小鼠中,H2<span style="color: black;">控制</span>了肺癌细胞的增殖、转移和侵袭,并<span style="color: black;">经过</span><span style="color: black;">控制</span>染色体稳定蛋白3(SMC3)减少了肺癌体积。Akagi和Baba的临床<span style="color: black;">科研</span><span style="color: black;">发掘</span>,<span style="color: black;">每日</span>吸入H2 3小时<span style="color: black;">明显</span>延长了IV期结肠和直肠癌<span style="color: black;">病人</span>的<span style="color: black;">没</span><span style="color: black;">发展</span><span style="color: black;">存活</span>期和总<span style="color: black;">存活</span>期。在82例中晚期癌症治疗中吸入H2的<span style="color: black;">科研</span><span style="color: black;">亦</span>证实了H2的抗肿瘤效果。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">化疗和放疗仍然是癌症治疗的<span style="color: black;">重点</span>策略。然而,这些治疗<span style="color: black;">方法</span>会<span style="color: black;">引起</span><span style="color: black;">明显</span>的氧化应激和炎症,对人体器官<span style="color: black;">导致</span>损害,而H2<span style="color: black;">能够</span>用作辅助<span style="color: black;">方法</span>来<span style="color: black;">控制</span>这些不良影响,<span style="color: black;">因为</span>其细胞<span style="color: black;">守护</span>特性,如抗氧化和抗炎。Runtuwene等人给予5-氟尿嘧啶静脉治疗的结直肠癌小鼠饮用HRW。<span style="color: black;">她们</span><span style="color: black;">发掘</span>,HRW<span style="color: black;">经过</span>在非癌细胞中<span style="color: black;">明显</span><span style="color: black;">增多</span>p-AMPK、促凋亡因子(AIF)和caspase-3的表达并延长患癌动物的寿命,<span style="color: black;">加强</span>了癌细胞的凋亡。顺铂在人<span style="color: black;">身体</span><span style="color: black;">导致</span>ROS的<span style="color: black;">累积</span>,降低谷胱甘肽活性,并<span style="color: black;">增多</span>氧化应激,而H2逆转了顺铂诱导的<span style="color: black;">身体</span>氧化应激并恢复了抗氧化酶活性。<span style="color: black;">另外</span>,H2减轻了顺铂的肾毒性,而不影响其抗肿瘤效果,并在小鼠实验中<span style="color: black;">加强</span>了动物的<span style="color: black;">存活</span>率。对接受放疗的肝细胞癌<span style="color: black;">病人</span>口服HRW(0.55-0.65 mM,<span style="color: black;">每日</span>1.5-2.0 L)<span style="color: black;">控制</span>了<span style="color: black;">病人</span>的氧化应激水平,并改善了<span style="color: black;">她们</span>的生活质量,而不影响放疗的效果。一些<span style="color: black;">科研</span>报告<span style="color: black;">叫作</span>,在放疗<span style="color: black;">时期</span>吸入H2减少了对血液和免疫系统的损害,并缓解了放疗诱导的胸腺淋巴瘤的生长。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">尽管一系列<span style="color: black;">科研</span>已证实H2<span style="color: black;">拥有</span>抗肿瘤效果,但为了进一步支持H2在临床上的应用,深入理解其<span style="color: black;">暗地里</span>的机制是必不可少的。H2<span style="color: black;">拥有</span>广泛的生理效应,<span style="color: black;">包含</span>抗氧化应激、抗炎和调节细胞凋亡。<span style="color: black;">另外</span>,<span style="color: black;">有些</span><span style="color: black;">科研</span>证明H2<span style="color: black;">经过</span>间接调节基因表达发挥抗肿瘤效果。<span style="color: black;">经过</span>这些<span style="color: black;">科研</span>,<span style="color: black;">咱们</span>认为H2<span style="color: black;">选取</span>性清除高毒性活性氧(ROS)的能力可能是其抗肿瘤效果的核心和基本机制,<span style="color: black;">因此呢</span>本文<span style="color: black;">重点</span>围绕这一点展开讨论。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"> 3.2 氢气<span style="color: black;">经过</span>抗氧化应激的抗肿瘤活性</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">细胞内的ROS<span style="color: black;">重点</span><span style="color: black;">源自</span>于线粒体<span style="color: black;">呼气</span>链的氧化磷酸化(OXPHOS)和细胞质中NADPH氧化酶(NOX)所调控的催化反应。一方面,ROS对生物分子蛋白质、磷脂和核酸极具氧化性和破坏性;另一方面,ROS是<span style="color: black;">重要</span>的细胞内信号分子,<span style="color: black;">能够</span><span style="color: black;">经过</span>调节<span style="color: black;">各样</span>信号通路影响细胞增殖和分化,如NF-κB和Akt/mTOR。在正常的生理<span style="color: black;">前提</span>下,<span style="color: black;">身体</span>完整的抗氧化酶系统能够保持ROS浓度在一个精确的动态平衡中,<span style="color: black;">包含</span>超氧化物歧化酶(SOD)将O2⋅−转化为H2O2,<span style="color: black;">而后</span>谷胱甘肽过氧化物酶(GPx)和过氧化氢酶(CAT)将H2O2转化为水。然而,身体缺乏针对·OH和ONOO–的特定清除系统,而这两种ROS高度细胞毒性,几乎对所有大分子(蛋白质、核酸、脂质)都有损害<span style="color: black;">功效</span>,这可能<span style="color: black;">引起</span>DNA双链结构破坏和碱基配对<span style="color: black;">损害</span>,从而<span style="color: black;">引起</span>癌变。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">癌基因的激活改变了线粒体功能,缺氧<span style="color: black;">一起</span><span style="color: black;">引起</span>癌细胞中ROS产生的<span style="color: black;">增多</span>。不幸的是,肿瘤细胞中的抗氧化酶系统<span style="color: black;">一般</span><span style="color: black;">没</span>法抵消过量产生的ROS,<span style="color: black;">引起</span>肿瘤微环境中<span style="color: black;">处在</span>高ROS状态。<span style="color: black;">实质</span>上,癌细胞不仅能适应中等程度的高ROS状态,还能利用ROS推动恶性表型。这是<span style="color: black;">由于</span>ROS<span style="color: black;">能够</span><span style="color: black;">加强</span>NF-κB、Akt/mTOR、Wnt/β-连环蛋白途径以及Ras、Bcr/Abl和c-Myc等癌基因的表达,维持肿瘤细胞的高强度代谢和增殖。<span style="color: black;">另外</span>,ROS依赖的信号通路<span style="color: black;">能够</span>促进癌症的侵袭和转移。然而,<span style="color: black;">有些</span>报告<span style="color: black;">显示</span>,在达到<span style="color: black;">必定</span>水平后,癌症微环境中<span style="color: black;">连续</span><span style="color: black;">上升</span>的ROS<span style="color: black;">能够</span>限制癌症的进一步发展。<span style="color: black;">因此呢</span>,癌症治疗中非<span style="color: black;">选取</span>性的抗氧化疗法可能会<span style="color: black;">引起</span>癌症的进一步发展。H2<span style="color: black;">选取</span>性地清除强氧化剂而不影响其他ROS,使其<span style="color: black;">作为</span>理想的治疗性抗氧化剂。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">一方面,H2<span style="color: black;">能够</span><span style="color: black;">控制</span>·OH和ONOO–对细胞DNA的损害,从而预防癌症的发展;另一方面,H2<span style="color: black;">能够</span>从癌细胞中清除ROS并<span style="color: black;">控制</span>多个ROS依赖的代谢信号通路来<span style="color: black;">控制</span>癌症的发展。<span style="color: black;">科研</span>已证实H2<span style="color: black;">能够</span>有效减少由<span style="color: black;">各样</span>病理<span style="color: black;">前提</span><span style="color: black;">导致</span>的氧化应激,<span style="color: black;">包含</span>癌症,并促进氧化还原平衡的恢复。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">H2还<span style="color: black;">能够</span><span style="color: black;">加强</span><span style="color: black;">有些</span>在调节癌细胞中氧化还原平衡中起<span style="color: black;">重要</span><span style="color: black;">功效</span>的抗氧化酶的表达,从而发挥抗肿瘤效果。<span style="color: black;">有些</span>非癌症<span style="color: black;">科研</span>证明,H2处理<span style="color: black;">明显</span><span style="color: black;">增多</span>了细胞内SOD、GPx、CAT和血红素加氧酶-1(HO-1)的表达,<span style="color: black;">加强</span>了它们消除ROS的<span style="color: black;">潜能</span>。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">H2调节<span style="color: black;">各样</span>信号通路的能力是其抗氧化<span style="color: black;">功效</span>的另一个<span style="color: black;">要紧</span>机制,例如Nrf2/ARE和p38/MAPK。一系列后续<span style="color: black;">科研</span><span style="color: black;">发掘</span>,H2还<span style="color: black;">经过</span>激活Keap1-Nrf2-ARE和Nrf2-HO-1途径来维持<span style="color: black;">身体</span>的氧化还原平衡,从而发挥免疫调节、抗炎和促癌凋亡的效果。Wang等人<span style="color: black;">发掘</span>,H2<span style="color: black;">控制</span>了肺癌小鼠肺组织中ROS的表达,并<span style="color: black;">增多</span>了SOD、IL-1β、IL-8、IL-13和肿瘤坏死因子-α(TNF-α)的表达。(图3)。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q8.itc.cn/images01/20240408/1e542749c96848278a3ea2b6fb8d3689.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">图3 H2的抗氧化应激<span style="color: black;">功效</span>机制。</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">SOD(超氧化物歧化酶)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">CAT(过氧化氢酶)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">GPx(谷胱甘肽过氧化物酶)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">HO-1(血红素加氧酶1)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">MPO(髓过氧化物酶)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">GSS(谷胱甘肽合成酶)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">MAPK(丝裂原活化蛋白激酶)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">JNK(c-Jun N端激酶)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">Nrf2(核因子E2<span style="color: black;">关联</span>因子2)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">ARE(抗氧化反应元件)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">NF-κB(核因子κB)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">TNF-α(肿瘤坏死因子α)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">ICAM-1(细胞间粘附分子1)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">IFN-γ(干扰素γ)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">IL-1β(白细胞介素1β)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">IL-8(白细胞介素8)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">IL-13(白细胞介素13)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">HMGB-1(高迁移率族蛋白1)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;">3.3 氢气的免疫<span style="color: black;">守护</span>功能</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">许多临床<span style="color: black;">实验</span><span style="color: black;">已然</span>证实了H2在调节癌症免疫中的<span style="color: black;">功效</span>。一项<span style="color: black;">触及</span>55名IV期结肠癌<span style="color: black;">病人</span>的2018年临床<span style="color: black;">科研</span><span style="color: black;">表示</span>,吸入H2<span style="color: black;">能够</span>减少<span style="color: black;">病人</span>外周血中CD8+ T细胞上PD-1的表达,减少CD8+ T细胞的耗竭,并改善预后。在一项临床晚期小细胞肺癌<span style="color: black;">科研</span>中,连续吸入H2两周<span style="color: black;">能够</span>逆转<span style="color: black;">病人</span>外周血中被<span style="color: black;">控制</span>的内在和适应性免疫系统,减少耗竭的CD8+ T细胞,并将功能性CD4+、CD8+ T细胞和自然杀伤细胞比率恢复到正常水平。尽管很少有<span style="color: black;">科研</span>调查潜在的机制,但<span style="color: black;">选取</span>性清除有毒ROS并<span style="color: black;">守护</span>T细胞线粒体可能是H2免疫<span style="color: black;">守护</span>功能的核心机制。在T细胞受体(TCR)被呈递癌症抗原激活后,下游信号转导<span style="color: black;">加强</span>了线粒体代谢,而ROS作为线粒体代谢的副产物,是调节参与T细胞代谢重组的多个核心途径的<span style="color: black;">要紧</span>分子。然而,如前所述,过度生长的癌细胞会<span style="color: black;">引起</span>癌症微环境中ROS水平<span style="color: black;">上升</span>,当T细胞被激活时,线粒体产生高量的ROS,加上<span style="color: black;">因为</span>缺氧等<span style="color: black;">原因</span><span style="color: black;">引起</span>的T细胞内ROS<span style="color: black;">增多</span>,使得肿瘤浸润淋巴细胞(TILs)在激活时面临更高的生理状态ROS。<span style="color: black;">连续</span>高水平的ROS会破坏T细胞线粒体,<span style="color: black;">控制</span>T细胞激活,并<span style="color: black;">经过</span>偏转T细胞代谢重构<span style="color: black;">引起</span>T细胞功能<span style="color: black;">阻碍</span>,并促进PD-1表达以诱导凋亡(图4)。另一方面,H2<span style="color: black;">经过</span>调节NADH/NADPH途径来对抗<span style="color: black;">各样</span><span style="color: black;">疾患</span><span style="color: black;">前提</span>下的氧化应激,并在身体环境中恢复氧化还原平衡,从而<span style="color: black;">守护</span>T细胞激活并防止凋亡。<span style="color: black;">另外</span>,在这种<span style="color: black;">状况</span>下,与常规抗肿瘤药物相比,H2的高渗透性使其能够<span style="color: black;">容易</span>穿透肿瘤内部,<span style="color: black;">乃至</span>进入TILs的线粒体等结构。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q1.itc.cn/images01/20240408/74a7a2d6317a46d8b2de2d5d5544758f.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">图4 H2<span style="color: black;">经过</span><span style="color: black;">选取</span>性消除肿瘤微环境中的ROS来发挥抗肿瘤活性。ROS<span style="color: black;">能够</span><span style="color: black;">经过</span>损害DNA<span style="color: black;">引起</span>肿瘤<span style="color: black;">出现</span>,<span style="color: black;">引起</span>遗传突变,并调节<span style="color: black;">各样</span><span style="color: black;">重要</span>信号通路从而<span style="color: black;">引起</span>肿瘤发展和转移。肿瘤微环境中的ROS<span style="color: black;">能够</span>渗透到T细胞中,<span style="color: black;">增多</span><span style="color: black;">连续</span>激活T细胞的氧气压力<span style="color: black;">包袱</span>。T细胞中过量的ROS<span style="color: black;">能够</span>干扰线粒体能量代谢,损害T细胞DNA,并促进PD-1表达,<span style="color: black;">引起</span>T细胞功能<span style="color: black;">阻碍</span>和凋亡。ROS:活性氧;EMT:上皮-间质转化;Teff:效应T细胞;Tex:耗竭T细胞。NF-κB:核因子κB;MAPK:丝裂原活化蛋白激酶;mTORC1:哺乳动物靶点雷帕霉素复合物1。<span style="color: black;">因为</span>线粒体<span style="color: black;">呼气</span>链是细胞内ROS产生的<span style="color: black;">重点</span><span style="color: black;">源自</span>,高局部浓度的ROS可能<span style="color: black;">引起</span>线粒体DNA突变,直接破坏线粒体动力学,<span style="color: black;">最后</span><span style="color: black;">引起</span>线粒体代谢功能<span style="color: black;">阻碍</span>和T细胞凋亡。<span style="color: black;">科研</span><span style="color: black;">显示</span>,肾细胞癌中的TILs含有超极化的、碎片化的线粒体,产生<span style="color: black;">明显</span>的ROS。Akagi等人在肺癌<span style="color: black;">病人</span>的临床<span style="color: black;">科研</span>中<span style="color: black;">发掘</span>,吸入H2<span style="color: black;">能够</span><span style="color: black;">加强</span>CD8+ T细胞的线粒体功能,并减少<span style="color: black;">病人</span>外周血中PD-1的表达,这<span style="color: black;">显示</span>H2可能<span style="color: black;">经过</span>调节过氧化物酶体增殖物激活受体-γ共激活因子-1α(PGC-1α)来发挥<span style="color: black;">功效</span>。Mo等人提出,体外H2<span style="color: black;">能够</span>进入线粒体中和有毒的ROS,减轻线粒体氧化应激<span style="color: black;">损害</span>,<span style="color: black;">守护</span>Na+/Ka+ ATP泵,<span style="color: black;">加强</span>Bcl-2表达,<span style="color: black;">控制</span>电压依赖性阴离子通道1(VDAC1)的表达和开放,<span style="color: black;">守护</span>线粒体膜,并<span style="color: black;">控制</span>凋亡因子如半胱天冬酶9的释放。</p>
    <h1 style="color: black; text-align: left; margin-bottom: 10px;"> <span style="color: black;">4、</span>氢气的<span style="color: black;">各样</span>应用</h1>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"> 4.1 外源性<span style="color: black;">弥补</span>氢气的<span style="color: black;">办法</span></strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">外源性氢气(H2)的常规给药方式<span style="color: black;">包含</span>吸入、口服氢富水(HRW)、注射含H2的生理盐水以及外用,例如眼药水和氢富水浴(图5)。<span style="color: black;">有些</span>综述比较了不同H2应用<span style="color: black;">办法</span>在<span style="color: black;">身体</span>器官中<span style="color: black;">导致</span>的H2浓度<span style="color: black;">增多</span>速率及其治疗效果,<span style="color: black;">咱们</span><span style="color: black;">这里</span>不做逐一介绍。然而,<span style="color: black;">咱们</span><span style="color: black;">不可</span>简单地将不同H2应用<span style="color: black;">办法</span>在<span style="color: black;">疾患</span>治疗中的<span style="color: black;">功效</span>与循环系统和<span style="color: black;">呼气</span>系统中H2的浓度<span style="color: black;">关联</span>联——例如,氢富水在调节肠道菌群和能量代谢方面的独特<span style="color: black;">功效</span>。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><img src="//q9.itc.cn/images01/20240408/de01d87be9d44b21a24329f0696a82a6.jpeg" style="width: 50%; margin-bottom: 20px;"></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">图5 氢气的<span style="color: black;">各样</span>应用。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">有些</span><span style="color: black;">科研</span><span style="color: black;">显示</span>,氢富水<span style="color: black;">能够</span>调节肠道菌群,有助于恢复和维持肠道菌群的稳态。2018年,日本学者<span style="color: black;">发掘</span>口服氢富水4周能改善结肠中的菌群分布,<span style="color: black;">增多</span>短链脂肪酸的产生,并降低<span style="color: black;">血液</span>胆固醇浓度。肖等人<span style="color: black;">发掘</span>,氢富水<span style="color: black;">能够</span><span style="color: black;">经过</span>调节MyD88的表达来影响肠道菌群,从而减少腹部放疗的<span style="color: black;">损伤</span>,并在小鼠中<span style="color: black;">增多</span>放疗后的存活率和体重。氢富水还与<span style="color: black;">膳食</span>相互<span style="color: black;">功效</span>,<span style="color: black;">加强</span>和延长肝脏内H2的<span style="color: black;">累积</span>,降低血脂和血糖,并促进肠上皮细胞直接分泌脑肠肽。在一篇<span style="color: black;">文案</span>中,氢富水预防了6-羟多巴胺诱导的帕金森病在小鼠中的发展,而<span style="color: black;">连续</span>的H2吸入和口服乳果糖的效果较差。尽管该<span style="color: black;">文案</span><span style="color: black;">无</span>探讨这一现象的潜在机制,但氢富水的独特生理效应,如调节肠道菌群,可能有助于此。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">有些</span><span style="color: black;">专家</span>设计了能在癌症部位释放<span style="color: black;">海量</span>H2的纳米颗粒,<span style="color: black;">供给</span>了在癌症部位精确产生持续高浓度H2以<span style="color: black;">加强</span>抗肿瘤效果的可能性,纳米技术与H2的联合应用可能是<span style="color: black;">将来</span><span style="color: black;">精细</span>癌症治疗的<span style="color: black;">要紧</span>方向。例如,张等人构建了以半导体聚合物-Pdots<span style="color: black;">做为</span>催化剂的共价负载脂质体,一种含有反应物、中间体和副产物的“纳米级H2工厂”,它<span style="color: black;">能够</span><span style="color: black;">经过</span>激光刺激在病灶处连续产生H2,有效减少小鼠的肿瘤生长。孙等人设计了一种激光触发的H2释放纳米颗粒,<span style="color: black;">加强</span>了小鼠膀胱癌的化疗效果并减少了化疗<span style="color: black;">药品</span>的毒性反应。吴等人构建了Au-TiO2@ZnS纳米颗粒,<span style="color: black;">能够</span>在体外X射线的触发下释放H2,在体外光声<span style="color: black;">影像</span>的<span style="color: black;">指点</span>下,结合放疗对小鼠原位肝癌取得了优异的治疗效果和温和的炎症反应。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><strong style="color: blue;"> 4.2<span style="color: black;">经过</span>调节肠道菌群产生氢气</strong></p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">除了<span style="color: black;">以上</span>外源性H2<span style="color: black;">弥补</span>外,<span style="color: black;">弥补</span>高纤维、难消化的淀粉和糖类<span style="color: black;">亦</span><span style="color: black;">能够</span><span style="color: black;">经过</span>肠道菌群<span style="color: black;">增多</span>肠道H2的产生,这是<span style="color: black;">平常</span>生活中最适宜和经济的治疗<span style="color: black;">办法</span>(见图5)。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">乳果糖是一种<span style="color: black;">不可</span>被人体吸收的双糖,能够促进肠道菌群产生<span style="color: black;">海量</span>的H2,从而有效<span style="color: black;">加强</span>人体腹腔和血液中的H2浓度。<span style="color: black;">科研</span>已证实,乳果糖<span style="color: black;">经过</span>促进肠道H2的产生,<span style="color: black;">能够</span>缓解多器官如肠道和大脑的炎症和损伤,例如减轻由致癌物质葡聚糖硫酸钠(DSS)<span style="color: black;">导致</span>的溃疡性结肠炎。Perlamutrov等人<span style="color: black;">发掘</span>,乳果糖<span style="color: black;">能够</span><span style="color: black;">经过</span>刺激H2和短链脂肪酸(SCFA)的产生来治疗皮炎。<span style="color: black;">科研</span>已确认,口服乳果糖或含有难消化淀粉和膳食纤维的<span style="color: black;">膳食</span>纤维<span style="color: black;">能够</span>调节肠道菌群,平衡肠道环境,并对慢性阻塞性肺病(COPD)和神经系统<span style="color: black;">疾患</span>等多系统<span style="color: black;">疾患</span><span style="color: black;">拥有</span>治疗效果。尽管<span style="color: black;">有些</span><span style="color: black;">科研</span>人员将乳果糖和纤维酸酯的临床效果很大程度上归因于特定的肠道菌群和SCFA,但H2可能是这些实验中被<span style="color: black;">忽略</span>的环节。类似的<span style="color: black;">药品</span>,<span style="color: black;">倘若</span>聚糖和菊粉,<span style="color: black;">亦</span><span style="color: black;">经过</span>促进肠道H2的产生而<span style="color: black;">拥有</span>抗炎和调节代谢的<span style="color: black;">功效</span>。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">膳食</span>管理对癌症<span style="color: black;">病人</span>的<span style="color: black;">长时间</span>预后<span style="color: black;">拥有</span>深远的<span style="color: black;">道理</span>。为了<span style="color: black;">保证</span>癌症<span style="color: black;">病人</span>的能量需求并<span style="color: black;">加强</span>免疫力,<span style="color: black;">有些</span><span style="color: black;">科研</span>人员提出了免疫营养<span style="color: black;">膳食</span>的概念,<span style="color: black;">包含</span>谷氨酰胺、精氨酸、含硫氨基酸和多不饱和脂肪酸。然而,<span style="color: black;">这般</span>的高蛋白、高脂肪<span style="color: black;">膳食</span>可能会一方面<span style="color: black;">引起</span><span style="color: black;">病人</span>血糖和血脂<span style="color: black;">上升</span>以及代谢<span style="color: black;">错乱</span>,另一方面不良的<span style="color: black;">膳食</span><span style="color: black;">选取</span>可能会<span style="color: black;">导致</span><span style="color: black;">病人</span>的<span style="color: black;">消极</span><span style="color: black;">心情</span>。如前所述,口服氢富水<span style="color: black;">拥有</span>良好的能量调节功能,<span style="color: black;">能够</span>改善机体的肝脏能量代谢,降低血脂血糖,并减少高脂<span style="color: black;">膳食</span>的副<span style="color: black;">功效</span>。相比之下,<span style="color: black;">有些</span><span style="color: black;">科研</span><span style="color: black;">显示</span>,<span style="color: black;">饱含</span>纤维和难消化淀粉的<span style="color: black;">膳食</span><span style="color: black;">拥有</span>抗炎和抗肿瘤<span style="color: black;">功效</span>。<span style="color: black;">因此呢</span>,<span style="color: black;">饱含</span>纤维的<span style="color: black;">膳食</span>或口服氢富水结合免疫营养<span style="color: black;">膳食</span>可能是围手术期癌症<span style="color: black;">病人</span>更适合的<span style="color: black;">膳食</span>策略。</p>
    <h1 style="color: black; text-align: left; margin-bottom: 10px;"> <span style="color: black;">5、</span>氢气在围手术期的应用</h1>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">临床上,肿瘤<span style="color: black;">一般</span><span style="color: black;">必须</span>手术治疗,<span style="color: black;">因此呢</span>不可避免地会面临多种围手术期的应激<span style="color: black;">原因</span>,如创伤、<span style="color: black;">麻木</span>和心理压力。<span style="color: black;">快速</span><span style="color: black;">上升</span>的氧化应激可能<span style="color: black;">引起</span>肿瘤<span style="color: black;">病人</span>内环境稳态失衡和免疫系统<span style="color: black;">控制</span>,<span style="color: black;">同期</span>促进肿瘤复发和转移。H2<span style="color: black;">拥有</span>抗氧化、抗炎和免疫调节的生理效应,<span style="color: black;">能够</span>有效地对抗这些<span style="color: black;">有害</span><span style="color: black;">原因</span>(见图6)。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">另外</span>,H2<span style="color: black;">能够</span>有效缓解多器官的缺血-再灌注<span style="color: black;">损害</span>。例如,在一项26名<span style="color: black;">病人</span>的随机对照临床<span style="color: black;">实验</span>中,Ono等人<span style="color: black;">发掘</span>,<span style="color: black;">每日</span>吸入3% H2两次,每次1小时,与传统治疗相比,<span style="color: black;">明显</span>改善了中风<span style="color: black;">病人</span>的生命体征、卒中量表评分、理疗指数和2周脑磁共振<span style="color: black;">影像</span>。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">术后认知功能<span style="color: black;">阻碍</span>(POCD)是临床手术<span style="color: black;">病人</span>的一种术后并发症,尤其是在老年<span style="color: black;">病人</span>中较为<span style="color: black;">广泛</span>。<span style="color: black;">日前</span>公认的POCD病因是<span style="color: black;">麻木</span>剂和手术<span style="color: black;">导致</span>的系统性炎症<span style="color: black;">一起</span><span style="color: black;">功效</span><span style="color: black;">引起</span>的神经炎症。H2<span style="color: black;">弥补</span><span style="color: black;">经过</span>纠正肠道菌群失衡,缓解了帕金森病和自闭症等中枢神经系统<span style="color: black;">疾患</span>的症状。Li等人<span style="color: black;">报告</span>,腹腔注射富氢盐水有效缓解了小鼠中枢神经系统的炎症和氧化应激,并减少了认知<span style="color: black;">阻碍</span>。<span style="color: black;">因此呢</span>,<span style="color: black;">有些</span><span style="color: black;">科研</span>人员<span style="color: black;">暗示</span>,H2可用于围手术期<span style="color: black;">病人</span>的神经<span style="color: black;">守护</span>(见图6)</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">图6在肿瘤<span style="color: black;">病人</span>的围手术期,氢气扮演了多重角色。氢气被<span style="color: black;">报告</span><span style="color: black;">拥有</span>抗氧化和抗炎<span style="color: black;">功效</span>,并能改善心脏、大脑、肺部和其他器官的缺血-再灌注<span style="color: black;">状况</span>,这使得它有可能减轻围手术期<span style="color: black;">要紧</span>器官的氧化应激和缺血-再灌注<span style="color: black;">损害</span>。氢气还<span style="color: black;">拥有</span>神经<span style="color: black;">守护</span>功能,能够对抗<span style="color: black;">麻木</span>剂和系统性炎症对中枢神经系统<span style="color: black;">导致</span>的损害。<span style="color: black;">另外</span>,富氢水<span style="color: black;">拥有</span>调节能量和调节肠道菌群的<span style="color: black;">功效</span>,这在肿瘤<span style="color: black;">病人</span>围手术期的<span style="color: black;">膳食</span>管理中<span style="color: black;">亦</span><span style="color: black;">特别有</span>价值。</p>
    <h1 style="color: black; text-align: left; margin-bottom: 10px;"> <span style="color: black;">6、</span>结论与展望</h1>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">肠道菌群产生的H2是<span style="color: black;">身体</span>内环境的一种天然抗氧化剂,它<span style="color: black;">能够</span>调节<span style="color: black;">身体</span>内环境由<span style="color: black;">各样</span><span style="color: black;">原由</span><span style="color: black;">导致</span>的氧化应激,并<span style="color: black;">作为</span>抵御癌症<span style="color: black;">出现</span>和发展的自然屏障。H2还是<span style="color: black;">经过</span>肠道菌群产生短链脂肪酸(SCFAs)的底物,这些物质<span style="color: black;">针对</span>维持身体免疫系统的稳定性以及影响肠-脑轴和肠-肺轴至关<span style="color: black;">要紧</span>。然而,H2<span style="color: black;">拥有</span>如此广泛效果的潜在机制可能<span style="color: black;">更加多</span>。例如,氢富水<span style="color: black;">能够</span>促进胃饥饿素的产生,这在调节<span style="color: black;">食品</span>摄入和能量稳态中至关<span style="color: black;">要紧</span>。<span style="color: black;">因此呢</span>,H2<span style="color: black;">可否</span><span style="color: black;">能够</span><span style="color: black;">经过</span>调节其他菌群代谢产物的分泌或<span style="color: black;">经过</span>其他胃肠激素影响能量代谢来影响身体的免疫系统,还<span style="color: black;">必须</span>进一步<span style="color: black;">科研</span>。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">肠道菌群与癌症<span style="color: black;">长时间</span><span style="color: black;">败兴</span><span style="color: black;">始终</span>受到广泛关注,多个国家的学者积极<span style="color: black;">科研</span>肠道菌群的基因组学和代谢组学与癌症之间的关系。在这些<span style="color: black;">科研</span>中,<span style="color: black;">科研</span>人员提出硫酸盐还原菌与结直肠癌<span style="color: black;">相关</span>。从H2代谢菌群的<span style="color: black;">方向</span>对<span style="color: black;">海量</span>肠道菌群基因组进行<span style="color: black;">更加多</span>分析,并深入<span style="color: black;">认识</span>肠道菌群H2代谢与癌症之间的<span style="color: black;">相关</span>,可能会<span style="color: black;">发掘</span>新的<span style="color: black;">药品</span>靶点,并<span style="color: black;">指点</span>H2在癌症治疗中的后续应用。例如,<span style="color: black;">有些</span><span style="color: black;">科研</span>者<span style="color: black;">经过</span>对氢化酶亚型的分布进行基因组和元基因组调查,探索了微生物群落H2代谢的<span style="color: black;">道理</span>。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">科研</span><span style="color: black;">显示</span>,大约2周的H2吸入<span style="color: black;">能够</span>恢复癌症<span style="color: black;">病人</span>外周血中免疫细胞的功能,并恢复身体的氧化还原平衡,这<span style="color: black;">显示</span>H2对身体的整体免疫系统<span style="color: black;">拥有</span><span style="color: black;">守护</span><span style="color: black;">功效</span>。然而,关于H2对癌症微环境中TILs的<span style="color: black;">详细</span><span style="color: black;">功效</span>及其潜在机制的深入<span style="color: black;">科研</span>仍然缺乏。然而,<span style="color: black;">按照</span><span style="color: black;">有些</span><span style="color: black;">科研</span>,H2<span style="color: black;">能够</span><span style="color: black;">经过</span>清除活性氧(ROS)来<span style="color: black;">守护</span>TILs的线粒体,防止TIL向末期表型分化,并<span style="color: black;">做为</span>一种合格的辅助免疫治疗剂。<span style="color: black;">因此呢</span>,其与免疫<span style="color: black;">检测</span>点阻断剂的协同治疗效果尚待<span style="color: black;">科研</span>。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;"><span style="color: black;">另外</span>,<span style="color: black;">有些</span><span style="color: black;">科研</span><span style="color: black;">显示</span>氢富水<span style="color: black;">能够</span>调节肝细胞和脂肪细胞的能量代谢。尽管H2<span style="color: black;">可否</span>能像在肝细胞和脂肪细胞中那样在癌细胞或免疫细胞中发挥类似的<span style="color: black;">功效</span>尚待<span style="color: black;">科研</span>,但这些<span style="color: black;">科研</span><span style="color: black;">显示</span>氢富水<span style="color: black;">能够</span><span style="color: black;">经过</span>调节免疫代谢在抗肿瘤免疫治疗中发挥更全面的潜在<span style="color: black;">功效</span>。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">气体信号分子之间<span style="color: black;">常常</span>存在交流。例如,H2S和NO<span style="color: black;">能够</span>调节彼此的产生并<span style="color: black;">加强</span>彼此的抗肿瘤效果。<span style="color: black;">另外</span>,不难<span style="color: black;">发掘</span>H2与其他气体信号分子之间的内在联系,<span style="color: black;">例如</span>硫酸盐还原菌<span style="color: black;">能够</span>代谢H2产生H2S,这些在肠道中<span style="color: black;">处在</span>某种微妙的平衡状态。H2<span style="color: black;">能够</span><span style="color: black;">经过</span>HO-1调节CO的产生,并且H2<span style="color: black;">能够</span><span style="color: black;">控制</span>诱导型一氧化氮合酶(iNOS)并<span style="color: black;">加强</span>内皮型一氧化氮合酶(eNOS)的表达。将H2与其他气体信号分子结合可能是H2用于癌症治疗的发展方向,<span style="color: black;">有些</span><span style="color: black;">科研</span><span style="color: black;">已然</span>在纳米技术中提出了这一想法。</p>
    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">免责声明:本文内容转载自氢思云,纳诺巴伯氢友会不对其科学性、有效性等作任何形式的<span style="color: black;">保准</span>。若内容<span style="color: black;">触及</span>健康<span style="color: black;">意见</span>,仅供参考勿<span style="color: black;">做为</span>健康<span style="color: black;">指点</span>依据。温馨提示:氢气不是<span style="color: black;">药品</span>,<span style="color: black;">不可</span>代替<span style="color: black;">药品</span>治疗<span style="color: black;">疾患</span>。<a style="color: black;"><span style="color: black;">返回首页,查看<span style="color: black;">更加多</span></span></a></p>

    <p style="font-size: 16px; color: black; line-height: 40px; text-align: left; margin-bottom: 15px;">外链论坛:http://www.fok120.com/</p>




流星的美 发表于 2024-8-29 18:23:00

你的见解真是独到,让我受益良多。

流星的美 发表于 2024-9-8 05:44:09

外链论坛的成功举办,是与各位领导、同仁们的关怀和支持分不开的。在此,我谨代表公司向关心和支持论坛的各界人士表示最衷心的感谢!
页: [1]
查看完整版本: 氢气对癌症的预防治疗功效